The nucleus for restricted Lie algebras
HTML articles powered by AMS MathViewer
- by David J. Benson and Daniel K. Nakano
- Proc. Amer. Math. Soc. 131 (2003), 3395-3405
- DOI: https://doi.org/10.1090/S0002-9939-03-06939-9
- Published electronically: March 25, 2003
- PDF | Request permission
Abstract:
The nucleus was a concept first developed in the cohomology theory for finite groups. In this paper the authors investigate the nucleus for restricted Lie algebras. The nucleus is explicitly described for several important classes of Lie algebras.References
- Christopher P. Bendel and Daniel K. Nakano, Complexes and vanishing of cohomology for group schemes, J. Algebra 214 (1999), no. 2, 668–713. MR 1680605, DOI 10.1006/jabr.1998.7711
- D. J. Benson, Representations and cohomology. II, Cambridge Studies in Advanced Mathematics, vol. 31, Cambridge University Press, Cambridge, 1991. Cohomology of groups and modules. MR 1156302
- D. J. Benson, Cohomology of modules in the principal block of a finite group, New York J. Math. 1 (1994/95), 196–205, electronic. MR 1362976
- D. J. Benson, The nucleus, and extensions between modules for a finite group, Representations of Algebras, Proceedings of the Ninth International Conference (Beijing 2000), Beijing Normal University Press, 2002.
- D. J. Benson, Jon F. Carlson, and J. Rickard, Complexity and varieties for infinitely generated modules. II, Math. Proc. Cambridge Philos. Soc. 120 (1996), no. 4, 597–615. MR 1401950, DOI 10.1017/S0305004100001584
- D. J. Benson, Jon F. Carlson, and Jeremy Rickard, Thick subcategories of the stable module category, Fund. Math. 153 (1997), no. 1, 59–80. MR 1450996, DOI 10.4064/fm-153-1-59-80
- D. J. Benson, J. F. Carlson, and G. R. Robinson, On the vanishing of group cohomology, J. Algebra 131 (1990), no. 1, 40–73. MR 1054998, DOI 10.1016/0021-8693(90)90165-K
- Jon F. Carlson, Varieties for cohomology with twisted coefficients, Acta Math. Sin. (Engl. Ser.) 15 (1999), no. 1, 81–92. MR 1701134, DOI 10.1007/s10114-999-0061-9
- Jon F. Carlson, The thick subcategory generated by the trivial module, Infinite length modules (Bielefeld, 1998) Trends Math., Birkhäuser, Basel, 2000, pp. 285–296. MR 1789221
- Jon F. Carlson and Geoffrey R. Robinson, Varieties and modules with vanishing cohomology, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 2, 245–251. MR 1281544, DOI 10.1017/S0305004100072558
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Jon F. Carlson, Daniel K. Nakano, and Karl M. Peters, On the vanishing of extensions of modules over reduced enveloping algebras, Math. Ann. 302 (1995), no. 3, 541–560. MR 1339926, DOI 10.1007/BF01444507
- Eric M. Friedlander and Brian J. Parshall, Support varieties for restricted Lie algebras, Invent. Math. 86 (1986), no. 3, 553–562. MR 860682, DOI 10.1007/BF01389268
- Eric M. Friedlander and Brian J. Parshall, Geometry of $p$-unipotent Lie algebras, J. Algebra 109 (1987), no. 1, 25–45. MR 898334, DOI 10.1016/0021-8693(87)90161-X
- Eric M. Friedlander and Andrei Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), no. 2, 209–270. MR 1427618, DOI 10.1007/s002220050119
- James E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1343976, DOI 10.1090/surv/043
- Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
- Daniel K. Nakano, Brian J. Parshall, and David C. Vella, Support varieties for algebraic groups, J. Reine Angew. Math. 547 (2002), 15–49. MR 1900135, DOI 10.1515/crll.2002.049
- Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 298694, DOI 10.2307/1970770
- Eric M. Friedlander and Andrei Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), no. 2, 209–270. MR 1427618, DOI 10.1007/s002220050119
- Eric M. Friedlander and Andrei Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), no. 2, 209–270. MR 1427618, DOI 10.1007/s002220050119
Bibliographic Information
- David J. Benson
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- MR Author ID: 34795
- Email: djb@byrd.math.uga.edu
- Daniel K. Nakano
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- MR Author ID: 310155
- ORCID: 0000-0001-7984-0341
- Email: nakano@math.uga.edu
- Received by editor(s): February 20, 2002
- Received by editor(s) in revised form: June 20, 2002
- Published electronically: March 25, 2003
- Additional Notes: The research of the first author was partially supported by NSF grant DMS-9988110
The research of the second author was partially supported by NSF grant DMS-0102225 - Communicated by: Stephen D. Smith
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3395-3405
- MSC (2000): Primary 20G10, 20G05
- DOI: https://doi.org/10.1090/S0002-9939-03-06939-9
- MathSciNet review: 1990628