Metrizability vs. Fréchet-Uryshon property
HTML articles powered by AMS MathViewer
- by B. Cascales, J. Ka̧kol and S. A. Saxon
- Proc. Amer. Math. Soc. 131 (2003), 3623-3631
- DOI: https://doi.org/10.1090/S0002-9939-03-06944-2
- Published electronically: February 24, 2003
- PDF | Request permission
Abstract:
In metrizable spaces, points in the closure of a subset $A$ are limits of sequences in $A$; i.e., metrizable spaces are Fréchet-Uryshon spaces. The aim of this paper is to prove that metrizability and the Fréchet-Uryshon property are actually equivalent for a large class of locally convex spaces that includes $(LF)$- and $(DF)$-spaces. We introduce and study countable bounded tightness of a topological space, a property which implies countable tightness and is strictly weaker than the Fréchet-Urysohn property. We provide applications of our results to, for instance, the space of distributions $\mathfrak {D}’(\Omega )$. The space $\mathfrak {D}’(\Omega )$ is not Fréchet-Urysohn, has countable tightness, but its bounded tightness is uncountable. The results properly extend previous work in this direction.References
- A. V. Arkhangel′skiĭ, Topological function spaces, Mathematics and its Applications (Soviet Series), vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992. Translated from the Russian by R. A. M. Hoksbergen. MR 1144519, DOI 10.1007/978-94-011-2598-7
- Pedro Pérez Carreras and José Bonet, Barrelled locally convex spaces, North-Holland Mathematics Studies, vol. 131, North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 113. MR 880207
- B. Cascales, On $K$-analytic locally convex spaces, Arch. Math. (Basel) 49 (1987), no. 3, 232–244. MR 906738, DOI 10.1007/BF01271663
- B. Cascales, J. Ka̧kol, and S. A. Saxon, Weight of precompact subsets and tightness, J. Math. Anal. Appl. 269 (2002), 500–518.
- B. Cascales and J. Orihuela, On compactness in locally convex spaces, Math. Z. 195 (1987), no. 3, 365–381. MR 895307, DOI 10.1007/BF01161762
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- P. Domański and D. Vogt, Linear topological properties of the space of analytic functions on the real line, Recent progress in functional analysis (Valencia, 2000) North-Holland Math. Stud., vol. 189, North-Holland, Amsterdam, 2001, pp. 113–132. MR 1861751, DOI 10.1016/S0304-0208(01)80040-2
- PawełDomański and Dietmar Vogt, The space of real-analytic functions has no basis, Studia Math. 142 (2000), no. 2, 187–200. MR 1792604, DOI 10.4064/sm-142-2-187-200
- S. P. Franklin, Spaces in which sequences suffice. II, Fund. Math. 61 (1967), 51–56. MR 222832, DOI 10.4064/fm-61-1-51-56
- J. E. Jayne and C. A. Rogers, Analytic sets, ch. K-analytic sets, pp. 1–181, Academic Press, 1980.
- J. Ka̧kol and S. A. Saxon, Montel $(DF)$-spaces, sequential $(LM)$-spaces and the strongest locally convex topology, J. London Math. Soc., 66 (2002), 388–406.
- J. Ka̧kol and S. A. Saxon, The Fréchet-Urysohn property, $(LM)$-spaces and the strongest locally convex topology, Math. Proc. Royal Irish Acad. (to appear), 2003.
- J. Ka̧kol and S. A. Saxon. The Fréchet-Urysohn view of weak and s-barrelledness, Bull. Belgian Math. Soc. (To appear), 2002.
- J. Ka̧kol and I. Tweddle, Spaces of continuous functions $C_{p}(X,E)$ as (LM)-spaces, Bull. Belgian Math. Soc. (To appear), 2002.
- Gottfried Köthe, Topological vector spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York, Inc., New York, 1969. Translated from the German by D. J. H. Garling. MR 0248498
- P. P. Narayanaswami and Stephen A. Saxon, (LF)-spaces, quasi-Baire spaces and the strongest locally convex topology, Math. Ann. 274 (1986), no. 4, 627–641. MR 848508, DOI 10.1007/BF01458598
- Stephen A. Saxon, Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology, Math. Ann. 197 (1972), 87–106. MR 305010, DOI 10.1007/BF01419586
- Stephen A. Saxon, Metrizable barrelled countable enlargements, Bull. London Math. Soc. 31 (1999), no. 6, 711–718. MR 1711030, DOI 10.1112/S0024609399006281
- Manuel Valdivia, Quasi-LB-spaces, J. London Math. Soc. (2) 35 (1987), no. 1, 149–168. MR 871772, DOI 10.1112/jlms/s2-35.1.149
Bibliographic Information
- B. Cascales
- Affiliation: Departamento de Matemáticas, Facultad de Matemáticas, Universidad de Murcia, 30.100 Espinardo, Murcia, Spain
- Email: beca@um.es
- J. Ka̧kol
- Affiliation: Faculty of Mathematics and Computer Science, A. Mickiewicz University, ul. Majetki 48/49,60-769 Poznań, Poland
- MR Author ID: 96980
- Email: kakol@amu.edu.pl
- S. A. Saxon
- Affiliation: Department of Mathematics, University of Florida, P.O. Box 118105, Gainesville, Florida 32611-8105
- MR Author ID: 155275
- Email: saxon@math.ufl.edu
- Received by editor(s): April 24, 2002
- Received by editor(s) in revised form: June 19, 2002
- Published electronically: February 24, 2003
- Additional Notes: The first-named author’s research was supported by D.G.E.S. grant PB 98-0381, Spain
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3623-3631
- MSC (2000): Primary 54E15, 46A50
- DOI: https://doi.org/10.1090/S0002-9939-03-06944-2
- MathSciNet review: 1991777