Special values of elliptic functions at points of the divisors of Jacobi forms
HTML articles powered by AMS MathViewer
- by YoungJu Choie and Winfried Kohnen
- Proc. Amer. Math. Soc. 131 (2003), 3309-3317
- DOI: https://doi.org/10.1090/S0002-9939-03-06945-4
- Published electronically: February 14, 2003
- PDF | Request permission
Abstract:
The main result of the paper gives an explicit formula for the sum of the values of even order derivatives with respect to $z$ of the Weierstrass $\wp$-function $\wp (\tau ,z)$ for the lattice ${\mathbf Z}\tau \oplus {\mathbf Z}$ (where $\tau$ is in the upper half-plane) extended over the points in the divisor of $\phi (\tau ,\cdot )$ (where $\phi (\tau ,z)$ is a meromorphic Jacobi form) in terms of the coefficients of the Laurent expansion of $\phi (\tau ,z)$ around $z=0$.References
- Rolf Berndt, Zur Arithmetik der elliptischen Funktionenkörper höherer Stufe, J. Reine Angew. Math. 326 (1981), 79–94 (German). MR 622346, DOI 10.1515/crll.1981.326.79
- Richard E. Borcherds, Automorphic forms on $\textrm {O}_{s+2,2}(\textbf {R})$ and infinite products, Invent. Math. 120 (1995), no. 1, 161–213. MR 1323986, DOI 10.1007/BF01241126
- J.H. Bruinier, W. Kohnen and K. Ono, The arithmetic of the values of modular functions and the divisors of modular forms, to appear in Compos. Math.
- Wolfgang Eholzer and Nils-Peter Skoruppa, Product expansions of conformal characters, Phys. Lett. B 388 (1996), no. 1, 82–89. MR 1418608, DOI 10.1016/0370-2693(96)01154-9
- Martin Eichler and Don Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781735, DOI 10.1007/978-1-4684-9162-3
- Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI 10.1007/BF01388809
- Benedict H. Gross and Don B. Zagier, On singular moduli, J. Reine Angew. Math. 355 (1985), 191–220. MR 772491
- Nicholas M. Katz, $p$-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 69–190. MR 0447119
- Serge Lang, Elliptic functions, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Amsterdam, 1973. With an appendix by J. Tate. MR 0409362
- D. Zagier, Traces of singular moduli, preprint 2000
Bibliographic Information
- YoungJu Choie
- Affiliation: Department of Mathematics, Pohang Institute of Science and Technology, Pohang 790-784, Korea
- Email: yjc@postech.ac.kr
- Winfried Kohnen
- Affiliation: Mathematisches Institut, Universität Heidelberg, INF 288, D-69120 Heidelberg, Germany
- Email: winfried@mathi.uni-heidelberg.de
- Received by editor(s): May 24, 2002
- Published electronically: February 14, 2003
- Communicated by: David E. Rohrlich
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3309-3317
- MSC (2000): Primary 11F03, 11G05
- DOI: https://doi.org/10.1090/S0002-9939-03-06945-4
- MathSciNet review: 1990618