## Discrete groups actions and corresponding modules

HTML articles powered by AMS MathViewer

- by E. V. Troitsky
- Proc. Amer. Math. Soc.
**131**(2003), 3411-3422 - DOI: https://doi.org/10.1090/S0002-9939-03-07043-6
- Published electronically: March 25, 2003
- PDF | Request permission

## Abstract:

We address the problem of interrelations between the properties of an action of a discrete group $\Gamma$ on a compact Hausdorff space $X$ and the algebraic and analytical properties of the module of all continuous functions $C(X)$ over the algebra of invariant continuous functions $C_\Gamma (X)$. The present paper is a continuation of our joint paper with M. Frank and V. Manuilov. Here we prove some statements inverse to the ones obtained in that paper: we deduce properties of actions from properties of modules. In particular, it is proved that if for a uniformly continuous action the module $C(X)$ is finitely generated projective over $C_\Gamma (X)$, then the cardinality of orbits of the action is finite and fixed. Sufficient conditions for existence of natural conditional expectations $C(X)\to C_\Gamma (X)$ are obtained.## References

- Esteban Andruchow and Demetrio Stojanoff,
*Geometry of conditional expectations and finite index*, Internat. J. Math.**5**(1994), no. 2, 169–178. MR**1266278**, DOI 10.1142/S0129167X94000085 - Michel Baillet, Yves Denizeau, and Jean-François Havet,
*Indice d’une espérance conditionnelle*, Compositio Math.**66**(1988), no. 2, 199–236 (French). MR**945550** - Nelson Dunford and Jacob T. Schwartz,
*Linear Operators. I. General Theory*, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR**0117523** - Michael Frank and Eberhard Kirchberg,
*On conditional expectations of finite index*, J. Operator Theory**40**(1998), no. 1, 87–111. MR**1642530** - M. Frank, V. M. Manuilov, and E. V. Troitsky,
*On conditional expectations arising from group actions*, Z. Anal. Anwendungen**16**(1997), no. 4, 831–850. MR**1615672**, DOI 10.4171/ZAA/794 - Edwin Hewitt and Kenneth A. Ross,
*Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations*, Die Grundlehren der mathematischen Wissenschaften, Band 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR**0156915** - Paul Jolissaint,
*Indice d’espérances conditionnelles et algèbres de von Neumann finies*, Math. Scand.**68**(1991), no. 2, 221–246 (French). MR**1129591**, DOI 10.7146/math.scand.a-12359 - V. F. R. Jones,
*Index for subfactors*, Invent. Math.**72**(1983), no. 1, 1–25. MR**696688**, DOI 10.1007/BF01389127 - G. G. Kasparov,
*Hilbert $C^{\ast }$-modules: theorems of Stinespring and Voiculescu*, J. Operator Theory**4**(1980), no. 1, 133–150. MR**587371** - Mahmood Khoshkam,
*Hilbert $C^*$-modules and conditional expectations on crossed products*, J. Austral. Math. Soc. Ser. A**61**(1996), no. 1, 106–118. MR**1402116**, DOI 10.1017/S1446788700000100 - E. C. Lance,
*Hilbert $C^*$-modules*, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists. MR**1325694**, DOI 10.1017/CBO9780511526206 - V. M. Manuilov and E. V. Troitsky,
*Hilbert $C^\ast$- and $W^\ast$-modules and their morphisms*, J. Math. Sci. (New York)**98**(2000), no. 2, 137–201. Functional analysis, 6. MR**1755888**, DOI 10.1007/BF02355447 - A. S. Miščenko and A. T. Fomenko,
*The index of elliptic operators over $C^{\ast }$-algebras*, Izv. Akad. Nauk SSSR Ser. Mat.**43**(1979), no. 4, 831–859, 967 (Russian). MR**548506** - Mihai Pimsner and Sorin Popa,
*Entropy and index for subfactors*, Ann. Sci. École Norm. Sup. (4)**19**(1986), no. 1, 57–106. MR**860811**, DOI 10.24033/asens.1504 - M. Rieffel,
*Integrable and proper action on C*-algebras, and square-integrable representations of groups*, E-print, 1998. - W. Rinow,
*Lehrbuch der Topologie*, Hochschulbücher für Mathematik, Band 79, VEB Deutscher Verlag der Wissenschaften, Berlin, 1975 (German). MR**0514884** - V. Seregin,
*Reflexivity of C*-Hilbert modules arising from group actions*, Moscow Univ. Math. Bull. (2002), to appear. - Yasuo Watatani,
*Index for $C^*$-subalgebras*, Mem. Amer. Math. Soc.**83**(1990), no. 424, vi+117. MR**996807**, DOI 10.1090/memo/0424

## Bibliographic Information

**E. V. Troitsky**- Affiliation: Department of Mechanics and Mathematics, Moscow State University, 119 899 Moscow, Russia
- Email: troitsky@mech.math.msu.su
- Received by editor(s): October 8, 2001
- Received by editor(s) in revised form: May 21, 2002
- Published electronically: March 25, 2003
- Additional Notes: This work was partially supported by the RFBR (Grant 02-01-00572) and by the President of RF (Grant 00-15-99263)
- Communicated by: David R. Larson
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**131**(2003), 3411-3422 - MSC (2000): Primary 37Bxx, 46L08; Secondary 47B48
- DOI: https://doi.org/10.1090/S0002-9939-03-07043-6
- MathSciNet review: 1990630