Discrete groups actions and corresponding modules
HTML articles powered by AMS MathViewer
- by E. V. Troitsky
- Proc. Amer. Math. Soc. 131 (2003), 3411-3422
- DOI: https://doi.org/10.1090/S0002-9939-03-07043-6
- Published electronically: March 25, 2003
- PDF | Request permission
Abstract:
We address the problem of interrelations between the properties of an action of a discrete group $\Gamma$ on a compact Hausdorff space $X$ and the algebraic and analytical properties of the module of all continuous functions $C(X)$ over the algebra of invariant continuous functions $C_\Gamma (X)$. The present paper is a continuation of our joint paper with M. Frank and V. Manuilov. Here we prove some statements inverse to the ones obtained in that paper: we deduce properties of actions from properties of modules. In particular, it is proved that if for a uniformly continuous action the module $C(X)$ is finitely generated projective over $C_\Gamma (X)$, then the cardinality of orbits of the action is finite and fixed. Sufficient conditions for existence of natural conditional expectations $C(X)\to C_\Gamma (X)$ are obtained.References
- Esteban Andruchow and Demetrio Stojanoff, Geometry of conditional expectations and finite index, Internat. J. Math. 5 (1994), no. 2, 169–178. MR 1266278, DOI 10.1142/S0129167X94000085
- Michel Baillet, Yves Denizeau, and Jean-François Havet, Indice d’une espérance conditionnelle, Compositio Math. 66 (1988), no. 2, 199–236 (French). MR 945550
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Michael Frank and Eberhard Kirchberg, On conditional expectations of finite index, J. Operator Theory 40 (1998), no. 1, 87–111. MR 1642530
- M. Frank, V. M. Manuilov, and E. V. Troitsky, On conditional expectations arising from group actions, Z. Anal. Anwendungen 16 (1997), no. 4, 831–850. MR 1615672, DOI 10.4171/ZAA/794
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Band 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
- Paul Jolissaint, Indice d’espérances conditionnelles et algèbres de von Neumann finies, Math. Scand. 68 (1991), no. 2, 221–246 (French). MR 1129591, DOI 10.7146/math.scand.a-12359
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127
- G. G. Kasparov, Hilbert $C^{\ast }$-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), no. 1, 133–150. MR 587371
- Mahmood Khoshkam, Hilbert $C^*$-modules and conditional expectations on crossed products, J. Austral. Math. Soc. Ser. A 61 (1996), no. 1, 106–118. MR 1402116, DOI 10.1017/S1446788700000100
- E. C. Lance, Hilbert $C^*$-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists. MR 1325694, DOI 10.1017/CBO9780511526206
- V. M. Manuilov and E. V. Troitsky, Hilbert $C^\ast$- and $W^\ast$-modules and their morphisms, J. Math. Sci. (New York) 98 (2000), no. 2, 137–201. Functional analysis, 6. MR 1755888, DOI 10.1007/BF02355447
- A. S. Miščenko and A. T. Fomenko, The index of elliptic operators over $C^{\ast }$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 4, 831–859, 967 (Russian). MR 548506
- Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 57–106. MR 860811, DOI 10.24033/asens.1504
- M. Rieffel, Integrable and proper action on C*-algebras, and square-integrable representations of groups, E-print, 1998.
- W. Rinow, Lehrbuch der Topologie, Hochschulbücher für Mathematik, Band 79, VEB Deutscher Verlag der Wissenschaften, Berlin, 1975 (German). MR 0514884
- V. Seregin, Reflexivity of C*-Hilbert modules arising from group actions, Moscow Univ. Math. Bull. (2002), to appear.
- Yasuo Watatani, Index for $C^*$-subalgebras, Mem. Amer. Math. Soc. 83 (1990), no. 424, vi+117. MR 996807, DOI 10.1090/memo/0424
Bibliographic Information
- E. V. Troitsky
- Affiliation: Department of Mechanics and Mathematics, Moscow State University, 119 899 Moscow, Russia
- Email: troitsky@mech.math.msu.su
- Received by editor(s): October 8, 2001
- Received by editor(s) in revised form: May 21, 2002
- Published electronically: March 25, 2003
- Additional Notes: This work was partially supported by the RFBR (Grant 02-01-00572) and by the President of RF (Grant 00-15-99263)
- Communicated by: David R. Larson
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3411-3422
- MSC (2000): Primary 37Bxx, 46L08; Secondary 47B48
- DOI: https://doi.org/10.1090/S0002-9939-03-07043-6
- MathSciNet review: 1990630