Vanishing theorems, boundedness and hyperbolicity over higher-dimensional bases
HTML articles powered by AMS MathViewer
- by Sándor J. Kovács
- Proc. Amer. Math. Soc. 131 (2003), 3353-3364
- DOI: https://doi.org/10.1090/S0002-9939-03-07070-9
- Published electronically: May 5, 2003
- PDF | Request permission
Abstract:
A vanishing theorem is proved for families over higher dimensional bases and applied to generalize some Shafarevich type statements to that setting.References
- D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, Invent. Math. 139 (2000), no. 2, 241–273. MR 1738451, DOI 10.1007/s002229900024
- Urban Angehrn and Yum Tong Siu, Effective freeness and point separation for adjoint bundles, Invent. Math. 122 (1995), no. 2, 291–308. MR 1358978, DOI 10.1007/BF01231446
- S. Ju. Arakelov, Families of algebraic curves with fixed degeneracies, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1269–1293 (Russian). MR 0321933
- A. Beauville, Le nombre minimum de fibres singulières d’une courbe stable sur $\mathbb P^{1}$, Astérisque 86 (1981) 97–108.
- Egor Bedulev and Eckart Viehweg, On the Shafarevich conjecture for surfaces of general type over function fields, Invent. Math. 139 (2000), no. 3, 603–615. MR 1738062, DOI 10.1007/s002229900046
- Hélène Esnault and Eckart Viehweg, Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Compositio Math. 76 (1990), no. 1-2, 69–85. Algebraic geometry (Berlin, 1988). MR 1078858
- Hélène Esnault and Eckart Viehweg, Lectures on vanishing theorems, DMV Seminar, vol. 20, Birkhäuser Verlag, Basel, 1992. MR 1193913, DOI 10.1007/978-3-0348-8600-0
- G. Faltings, Arakelov’s theorem for abelian varieties, Invent. Math. 73 (1983), no. 3, 337–347. MR 718934, DOI 10.1007/BF01388431
- Kalle Karu, Minimal models and boundedness of stable varieties, J. Algebraic Geom. 9 (2000), no. 1, 93–109. MR 1713521
- János Kollár, Subadditivity of the Kodaira dimension: fibers of general type, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 361–398. MR 946244, DOI 10.2969/aspm/01010361
- János Kollár, Projectivity of complete moduli, J. Differential Geom. 32 (1990), no. 1, 235–268. MR 1064874
- Sándor J. Kovács, Smooth families over rational and elliptic curves, J. Algebraic Geom. 5 (1996), no. 2, 369–385. MR 1374712
- Sándor J. Kovács, Families over a base with a birationally nef tangent bundle, Math. Ann. 308 (1997), no. 2, 347–359. MR 1464907, DOI 10.1007/s002080050079
- Sándor J. Kovács, On the minimal number of singular fibres in a family of surfaces of general type, J. Reine Angew. Math. 487 (1997), 171–177. MR 1454264, DOI 10.1515/crll.1997.487.171
- Sándor J. Kovács, Algebraic hyperbolicity of fine moduli spaces, J. Algebraic Geom. 9 (2000), no. 1, 165–174. MR 1713524
- Sándor J. Kovács, Logarithmic vanishing theorems and Arakelov-Parshin boundedness for singular varieties, Compositio Math. 131 (2002), no. 3, 291–317. MR 1905025, DOI 10.1023/A:1015592420937
- J. Le Potier, Annulation de la cohomolgie à valeurs dans un fibré vectoriel holomorphe positif de rang quelconque, Math. Ann. 218 (1975), no. 1, 35–53 (French). MR 385179, DOI 10.1007/BF01350066
- Luca Migliorini, A smooth family of minimal surfaces of general type over a curve of genus at most one is trivial, J. Algebraic Geom. 4 (1995), no. 2, 353–361. MR 1311355
- A. N. Paršin, Algebraic curves over function fields. I, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1191–1219 (Russian). MR 0257086
- Bernard Shiffman and Andrew John Sommese, Vanishing theorems on complex manifolds, Progress in Mathematics, vol. 56, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 782484, DOI 10.1007/978-1-4899-6680-3
- Eckart Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 329–353. MR 715656, DOI 10.2969/aspm/00110329
- Eckart Viehweg, Weak positivity and the additivity of the Kodaira dimension. II. The local Torelli map, Classification of algebraic and analytic manifolds (Katata, 1982) Progr. Math., vol. 39, Birkhäuser Boston, Boston, MA, 1983, pp. 567–589. MR 728619
- John W. Green, Harmonic functions in domains with multiple boundary points, Amer. J. Math. 61 (1939), 609–632. MR 90, DOI 10.2307/2371316
- Eckart Viehweg, Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 30, Springer-Verlag, Berlin, 1995. MR 1368632, DOI 10.1007/978-3-642-79745-3
- E. Viehweg, Positivity of direct image sheaves and applications to families of higher dimensional manifolds, Lecture notes, “School on Vanishing Theorems and Effective Results in Algebraic Geometry", ICTP, Trieste, (2000).
- Eckart Viehweg and Kang Zuo, On the isotriviality of families of projective manifolds over curves, J. Algebraic Geom. 10 (2001), no. 4, 781–799. MR 1838979
- E. Viehweg, K. Zuo, Base spaces of non-isotrivial families of smooth minimal models, preprint (2001).
- E. Viehweg, K. Zuo, On the Brody hyperbolicity of moduli spaces for canonically polarized manifolds, preprint (2001).
Bibliographic Information
- Sándor J. Kovács
- Affiliation: Department of Mathematics, University of Washington, 354350, Seattle, Washington 98195
- MR Author ID: 289685
- Email: kovacs@math.washington.edu
- Received by editor(s): April 4, 2001
- Received by editor(s) in revised form: June 10, 2002
- Published electronically: May 5, 2003
- Additional Notes: This work was supported in part by NSF Grants DMS-0196072, DMS-0092165, and a Sloan Research Fellowship.
- Communicated by: Michael Stillman
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3353-3364
- MSC (2000): Primary 14J10
- DOI: https://doi.org/10.1090/S0002-9939-03-07070-9
- MathSciNet review: 1990623