On the best possible character of the $L^Q$ norm in some a priori estimates for non-divergence form equations in Carnot groups
HTML articles powered by AMS MathViewer
- by Donatella Danielli, Nicola Garofalo and Duy-Minh Nhieu
- Proc. Amer. Math. Soc. 131 (2003), 3487-3498
- DOI: https://doi.org/10.1090/S0002-9939-03-07105-3
- Published electronically: June 3, 2003
- PDF | Request permission
Abstract:
Let $\boldsymbol {G}$ be a group of Heisenberg type with homogeneous dimension $Q$. For every $0<\epsilon <Q$ we construct a non-divergence form operator $L^\epsilon$ and a non-trivial solution $u^\epsilon \in \mathcal {L}^{2,Q-\epsilon }(\Omega )\cap C(\overline {\Omega })$ to the Dirichlet problem: $Lu=0$ in $\Omega$, $u=0$ on $\partial \Omega$. This non-uniqueness result shows the impossibility of controlling the maximum of $u$ with an $L^p$ norm of $Lu$ when $p<Q$. Another consequence is the impossiblity of an Alexandrov-Bakelman type estimate such as \[ \sup _\Omega u\le C\left (\int _{\Omega }|\operatorname {det}(u_{,ij})| dg\right ) ^{1/m},\] where $m$ is the dimension of the horizontal layer of the Lie algebra and $(u_{,ij})$ is the symmetrized horizontal Hessian of $u$.References
- A. D. Aleksandrov, Certain estimates for the Dirichlet problem, Soviet Math. Dokl. 1 (1961), 1151–1154. MR 0147776
- A. D. Aleksandrov, Impossibility of general estimates of solutions and of uniqueness conditions for linear equations with norms weaker than those of $L_{n}$, Vestnik Leningrad. Univ. 21 (1966), no. 13, 5–10 (Russian, with English summary). MR 0197952
- I. Ja. Bakel′man, On the theory of quasilinear elliptic equations, Sibirsk. Mat. Ž. 2 (1961), 179–186 (Russian). MR 0126604
- I. Ja. Bakel′man, Geometricheskie metody resheniya èllipticheskikh uravneniĭ, Izdat. “Nauka”, Moscow, 1965 (Russian). MR 0194727
- Ilya J. Bakelman, Convex analysis and nonlinear geometric elliptic equations, Springer-Verlag, Berlin, 1994. With an obituary for the author by William Rundell; Edited by Steven D. Taliaferro. MR 1305147, DOI 10.1007/978-3-642-69881-1
- André Bellaïche and Jean-Jacques Risler (eds.), Sub-Riemannian geometry, Progress in Mathematics, vol. 144, Birkhäuser Verlag, Basel, 1996. MR 1421821, DOI 10.1007/978-3-0348-9210-0
- Jean-Michel Bony, Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), no. fasc. 1, 277–304 xii (French, with English summary). MR 262881, DOI 10.5802/aif.319
- Marco Bramanti and Luca Brandolini, $L^p$ estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc. 352 (2000), no. 2, 781–822. MR 1608289, DOI 10.1090/S0002-9947-99-02318-1
- Luca Capogna, Donatella Danielli, and Nicola Garofalo, Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, Amer. J. Math. 118 (1996), no. 6, 1153–1196. MR 1420920, DOI 10.1353/ajm.1996.0046
- Filippo Chiarenza, Michele Frasca, and Placido Longo, $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), no. 2, 841–853. MR 1088476, DOI 10.1090/S0002-9947-1993-1088476-1
- Michael Cowling, Anthony H. Dooley, Adam Korányi, and Fulvio Ricci, $H$-type groups and Iwasawa decompositions, Adv. Math. 87 (1991), no. 1, 1–41. MR 1102963, DOI 10.1016/0001-8708(91)90060-K
- Jacek Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc. 83 (1981), no. 1, 69–70. MR 619983, DOI 10.1090/S0002-9939-1981-0619983-8
- D. Danielli, N. Garofalo, and D. M. Nhieu, Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces, Memoirs of the Amer. Math. Soc., to appear.
- —, Notions of convexity in Carnot groups, Comm. Anal. Geom., 11 (2) (2003), 263–341.
- —, The Monge-Ampère equation in Carnot groups, work in preparation.
- G. B. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. 79 (1973), 373–376. MR 315267, DOI 10.1090/S0002-9904-1973-13171-4
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 494315, DOI 10.1007/BF02386204
- N. Garofalo, Analysis and Geometry of Carnot-Carathéodory Spaces, with Applications to PDE’s, Birkhäuser, book in preparation.
- N. Garofalo and F. Tournier, Monotonicity and comparison theorems of the Monge-Ampère equation in the Heisenberg group, preprint, 2003.
- Nicola Garofalo and Dimiter Vassilev, Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J. 106 (2001), no. 3, 411–448. MR 1813232, DOI 10.1215/S0012-7094-01-10631-5
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- Aroldo Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), no. 1, 147–153. MR 554324, DOI 10.1090/S0002-9947-1980-0554324-X
- Carlo Miranda, Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui, Ann. Mat. Pura Appl. (4) 63 (1963), 353–386 (Italian). MR 170090, DOI 10.1007/BF02412185
- Carlo Pucci, Operatori ellittici estremanti, Ann. Mat. Pura Appl. (4) 72 (1966), 141–170 (Italian, with English summary). MR 208150, DOI 10.1007/BF02414332
- Carlo Pucci, Limitazioni per soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl. (4) 74 (1966), 15–30 (Italian, with English summary). MR 214905, DOI 10.1007/BF02416445
- James Serrin, Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 18 (1964), 385–387. MR 170094
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1974.
Bibliographic Information
- Donatella Danielli
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- MR Author ID: 324114
- Email: danielli@math.purdue.edu
- Nicola Garofalo
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907 – and – Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università di Padova, 35131 Padova, Italy
- MR Author ID: 71535
- Email: garofalo@math.purdue.edu, garofalo@dmsa.unipd.it
- Duy-Minh Nhieu
- Affiliation: Department of Mathematics, Georgetown University, Washington, DC 20057-1233
- Email: nhieu@math.georgetown.edu
- Received by editor(s): June 2, 2002
- Published electronically: June 3, 2003
- Additional Notes: This work was supported in part by NSF Grant No. DMS-0070492
- Communicated by: David S. Tartakoff
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3487-3498
- MSC (2000): Primary 35B50, 22E30, 52A30
- DOI: https://doi.org/10.1090/S0002-9939-03-07105-3
- MathSciNet review: 1991760