The Derksen invariant vs. the Makar-Limanov invariant
HTML articles powered by AMS MathViewer
- by Anthony Crachiola and Stefan Maubach
- Proc. Amer. Math. Soc. 131 (2003), 3365-3369
- DOI: https://doi.org/10.1090/S0002-9939-03-07155-7
- Published electronically: June 19, 2003
- PDF | Request permission
Abstract:
In this article it is shown that the Makar-Limanov invariant of a ring (or variety) can be trivial while the Derksen invariant is not, and vice versa.References
- Shreeram S. Abhyankar, William Heinzer, and Paul Eakin, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310–342. MR 306173, DOI 10.1016/0021-8693(72)90134-2
- W. Danielewski, On the cancellation problem and automorphism groups of affine algebraic varieties, preprint, Warsaw, (1989)
- H. Derksen, Constructive Invariant Theory and the Linearisation Problem, Ph.D. thesis, University of Basel, (1997)
- Arno van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, vol. 190, Birkhäuser Verlag, Basel, 2000. MR 1790619, DOI 10.1007/978-3-0348-8440-2
- L. Makar-Limanov, On the hypersurface $x+x^2y+z^2+t^3=0$ in $\textbf {C}^4$ or a $\textbf {C}^3$-like threefold which is not $\textbf {C}^3$. part B, Israel J. Math. 96 (1996), no. part B, 419–429. MR 1433698, DOI 10.1007/BF02937314
- L. Makar-Limanov, Cancellation for curves, preprint
- L. Makar-Limanov, Locally nilpotent derivations, a new ring invariant and applications, available at http://www.math.wayne.edu/˜lml
- L. Makar-Limanov, On the group of automorphisms of a surface $x^ny=P(z)$, Israel J. Math. 121 (2001), 113–123. MR 1818396, DOI 10.1007/BF02802499
- Rudolf Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A384–A387 (French). MR 232770
- A. Seidenberg, Derivations and integral closure, Pacific J. Math. 16 (1966), 167–173. MR 188247, DOI 10.2140/pjm.1966.16.167
- Wolmer V. Vasconcelos, Derivations of commutative noetherian rings, Math. Z. 112 (1969), 229–233. MR 254034, DOI 10.1007/BF01110224
Bibliographic Information
- Anthony Crachiola
- Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
- Email: crach@math.wayne.edu
- Stefan Maubach
- Affiliation: Department of Mathematics, University of Nijmegen, Toernooiveldt, 6525 ED Nijmegen, The Netherlands
- Email: stefanm@sci.kun.nl
- Received by editor(s): June 12, 2002
- Published electronically: June 19, 2003
- Communicated by: Bernd Ulrich
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3365-3369
- MSC (2000): Primary 14R05; Secondary 13N15
- DOI: https://doi.org/10.1090/S0002-9939-03-07155-7
- MathSciNet review: 1990624