Banach spaces having the Radon-Nikodym property and numerical index 1
HTML articles powered by AMS MathViewer
- by Miguel Martín
- Proc. Amer. Math. Soc. 131 (2003), 3407-3410
- DOI: https://doi.org/10.1090/S0002-9939-03-07176-4
- Published electronically: June 19, 2003
- PDF | Request permission
Abstract:
Let $X$ be a Banach space with the Radon-Nikodỳm property. Then, the following are equivalent. (i) $X$ has numerical index 1. (ii) $|x^{**}(x^*)|=1$ for all $x^*\in \mathrm {ex}(B_{X^*})$ and $x^{**}\in \mathrm {ex}(B_{X^{**}})$. (iii) $X$ is an almost-CL-space. (iv) There are a compact Hausdorff space $K$ and a linear isometry $J:X \to C(K)$ such that $|x^{**}(J^*\delta _s)|=1$ for all $s\in K$ and $x^{**}\in \mathrm {ex}(B_{X^{**}})$. If $X$ is a real space, the above conditions are equivalent to being semi-nicely embedded in some space $C(K)$.References
- M. D. Acosta, CL-spaces and numerical radius attaining operators, Extracta Math. 5 (1990), 138–140.
- Ehrhard Behrends, $M$-structure and the Banach-Stone theorem, Lecture Notes in Mathematics, vol. 736, Springer, Berlin, 1979. MR 547509, DOI 10.1007/BFb0063153
- F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note Series, vol. 2, Cambridge University Press, London-New York, 1971. MR 0288583, DOI 10.1017/CBO9781107359895
- F. F. Bonsall and J. Duncan, Numerical ranges. II, London Mathematical Society Lecture Note Series, No. 10, Cambridge University Press, New York-London, 1973. MR 0442682, DOI 10.1017/CBO9780511662515
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- J. Duncan, C. M. McGregor, J. D. Pryce, and A. J. White, The numerical index of a normed space, J. London Math. Soc. (2) 2 (1970), 481–488. MR 264371, DOI 10.1112/jlms/2.Part_{3}.481
- C. Finet, M. Martín, and R. Payá, Numerical index and renorming, Proc. Amer. Math. Soc. 131 (2003), 871–877.
- R. E. Fullerton, Geometrical characterizations of certain function spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 227–236. MR 0132998
- Åsvald Lima, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1–62. MR 430747, DOI 10.1090/S0002-9947-1977-0430747-4
- Asvald Lima, Intersection properties of balls in spaces of compact operators, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, v, 35–65. MR 511813
- Joram Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964), 112. MR 179580
- Ginés López, Miguel Martín, and Rafael Payá, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999), no. 2, 207–212. MR 1664125, DOI 10.1112/S002460939800513X
- Miguel Martín, A survey on the numerical index of a Banach space, Extracta Math. 15 (2000), no. 2, 265–276. III Congress on Banach Spaces (Jarandilla de la Vera, 1998). MR 1823892
- Miguel Martín and Rafael Payá, Numerical index of vector-valued function spaces, Studia Math. 142 (2000), no. 3, 269–280. MR 1792610, DOI 10.4064/sm-142-3-269-280
- M. Martín and A. R. Villena, Numerical index and Daugavet property for $L_\infty (\mu ,X)$, to appear in Proc. Edinburgh Math. Soc.
- Dirk Werner, The Daugavet equation for operators on function spaces, J. Funct. Anal. 143 (1997), no. 1, 117–128. MR 1428119, DOI 10.1006/jfan.1996.2979
Bibliographic Information
- Miguel Martín
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- MR Author ID: 643000
- ORCID: 0000-0003-4502-798X
- Email: mmartins@ugr.es
- Received by editor(s): November 20, 2001
- Published electronically: June 19, 2003
- Additional Notes: This research was partially supported by Spanish MCYT projects no. BFM2000-1467 and BFM2002-00061
- Communicated by: Jonathan M. Borwein
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3407-3410
- MSC (2000): Primary 46B20, 47A12
- DOI: https://doi.org/10.1090/S0002-9939-03-07176-4
- MathSciNet review: 1990629