A reproducing kernel space model for $\mathbf {N}_\kappa$-functions
HTML articles powered by AMS MathViewer
- by Vladimir Derkach and Seppo Hassi
- Proc. Amer. Math. Soc. 131 (2003), 3795-3806
- DOI: https://doi.org/10.1090/S0002-9939-03-06946-6
- Published electronically: March 25, 2003
- PDF | Request permission
Abstract:
A new model for generalized Nevanlinna functions $Q\in \mathbf {N}_\kappa$ will be presented. It involves Bezoutians and companion operators associated with certain polynomials determined by the generalized zeros and poles of $Q$. The model is obtained by coupling two operator models and expressed by means of abstract boundary mappings and the corresponding Weyl functions.References
- Daniel Alpay, Aad Dijksma, James Rovnyak, and Hendrik de Snoo, Schur functions, operator colligations, and reproducing kernel Pontryagin spaces, Operator Theory: Advances and Applications, vol. 96, Birkhäuser Verlag, Basel, 1997. MR 1465432, DOI 10.1007/978-3-0348-8908-7
- V. A. Derkach, On generalized resolvents of Hermitian relations in Krein spaces, J. Math. Sci. (New York) 97 (1999), no. 5, 4420–4460. Functional analysis, 5. MR 1728871, DOI 10.1007/BF02366102
- V. A. Derkach, S. Hassi, M. M. Malamud, and H. S. V. de Snoo, Generalized resolvents of symmetric operators and admissibility, Methods Funct. Anal. Topology 6 (2000), no. 3, 24–55. MR 1903120
- Vladimir Derkach, Seppo Hassi, and Henk de Snoo, Operator models associated with Kac subclasses of generalized Nevanlinna functions, Methods Funct. Anal. Topology 5 (1999), no. 1, 65–87. MR 1771251
- Vladimir Derkach, Seppo Hassi, and Henk de Snoo, Operator models associated with singular perturbations, Methods Funct. Anal. Topology 7 (2001), no. 3, 1–21. MR 1886462
- Vladimir Derkach, Seppo Hassi, and Henk de Snoo, Rank one perturbations in a Pontryagin space with one negative square, J. Funct. Anal. 188 (2002), no. 2, 317–349. MR 1883411, DOI 10.1006/jfan.2001.3837
- V.A. Derkach, S. Hassi, and H.S.V. de Snoo, “Singular perturbations of selfadjoint operators”, Mathematical Physics, Analysis and Geometry (to appear).
- V. A. Derkach and M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1–95. MR 1087947, DOI 10.1016/0022-1236(91)90024-Y
- V. A. Derkach and M. M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73 (1995), no. 2, 141–242. Analysis. 3. MR 1318517, DOI 10.1007/BF02367240
- A. Dijksma, H. Langer, A. Luger, and Yu. Shondin, A factorization result for generalized Nevanlinna functions of the class $\scr N_\kappa$, Integral Equations Operator Theory 36 (2000), no. 1, 121–125. MR 1736921, DOI 10.1007/BF01236290
- Aad Dijksma, Heinz Langer, Yuri Shondin, and Chris Zeinstra, Self-adjoint operators with inner singularities and Pontryagin spaces, Operator theory and related topics, Vol. II (Odessa, 1997) Oper. Theory Adv. Appl., vol. 118, Birkhäuser, Basel, 2000, pp. 105–175. MR 1765467
- Aad Dijksma, Heinz Langer, and Henk de Snoo, Symmetric Sturm-Liouville operators with eigenvalue depending boundary conditions, Oscillations, bifurcation and chaos (Toronto, Ont., 1986) CMS Conf. Proc., vol. 8, Amer. Math. Soc., Providence, RI, 1987, pp. 87–116. MR 909902
- V. I. Gorbachuk and M. L. Gorbachuk, Boundary value problems for operator differential equations, Mathematics and its Applications (Soviet Series), vol. 48, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated and revised from the 1984 Russian original. MR 1154792, DOI 10.1007/978-94-011-3714-0
- P. Jonas and H. Langer, A model for $\pi$-selfadjoint operators in $\pi _1$-spaces and a special linear pencil, Integral Equations Operator Theory 8 (1985), no. 1, 13–35. MR 775212, DOI 10.1007/BF01199980
- P. Jonas, H. Langer, and B. Textorius, Models and unitary equivalence of cyclic selfadjoint operators in Pontrjagin spaces, Operator theory and complex analysis (Sapporo, 1991) Oper. Theory Adv. Appl., vol. 59, Birkhäuser, Basel, 1992, pp. 252–284. MR 1246819
- M. G. Kreĭn and H. Langer, Über die $Q$-Funktion eines $\pi$-hermiteschen Operators im Raume $\Pi _{\kappa }$, Acta Sci. Math. (Szeged) 34 (1973), 191–230 (German). MR 318958
- M. G. Kreĭn and H. Langer, Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume $\Pi _{\kappa }$ zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen, Math. Nachr. 77 (1977), 187–236. MR 461188, DOI 10.1002/mana.19770770116
- M. G. Kreĭn and H. Langer, Some propositions on analytic matrix functions related to the theory of operators in the space $\Pi _{\kappa }$, Acta Sci. Math. (Szeged) 43 (1981), no. 1-2, 181–205. MR 621369
- Peter Lancaster and Miron Tismenetsky, The theory of matrices, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1985. MR 792300
- E. M. Russakovskiĭ, An operator treatment of a boundary value problem with a spectral parameter that occurs polynomially in the boundary conditions, Funkcional. Anal. i Priložen. 9 (1975), no. 4, 91–92 (Russian). MR 0415418
- Pekka Sorjonen, Pontrjaginräume mit einem reproduzierenden Kern, Ann. Acad. Sci. Fenn. Ser. A I Math. 594 (1975), 30. MR 0405079
Bibliographic Information
- Vladimir Derkach
- Affiliation: Department of Mathematics, Donetsk National University, Universitetskaya str. 24, 83055 Donetsk, Ukraine
- Address at time of publication: Department of Mathematics, Western Washington University, Bellingham, Washington 98225
- Email: derkacv@cc.wwu.edu
- Seppo Hassi
- Affiliation: Department of Mathematics and Statistics, University of Vaasa, PL 700, 65101 Vaasa, Finland
- Email: sha@uwasa.fi
- Received by editor(s): December 7, 2001
- Received by editor(s) in revised form: July 10, 2002
- Published electronically: March 25, 2003
- Additional Notes: The support of the Academy of Finland (projects 40362 and 52528) is gratefully acknowledged
- Communicated by: Joseph A. Ball
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3795-3806
- MSC (2000): Primary 47B25, 47B50; Secondary 46C20, 46E22
- DOI: https://doi.org/10.1090/S0002-9939-03-06946-6
- MathSciNet review: 1999926