On non-measurability of ${\ell _\infty }/c_0$ in its second dual
HTML articles powered by AMS MathViewer
- by Dennis K. Burke and Roman Pol
- Proc. Amer. Math. Soc. 131 (2003), 3955-3959
- DOI: https://doi.org/10.1090/S0002-9939-03-06983-1
- Published electronically: June 30, 2003
- PDF | Request permission
Abstract:
We show that $\ell _\infty /c_0=C(\mathbb {N}^*)$ with the weak topology is not an intersection of $\aleph _1$ Borel sets in its Čech-Stone extension (and hence in any compactification). Assuming (CH), this implies that $(C(\mathbb {N}^*),\mathrm {weak})$ has no continuous injection onto a Borel set in a compact space, or onto a Lindelöf space. Under (CH), this answers a question of Arhangel’skiĭ.References
- A. V. Arhangel’skiĭ, $C_p$-theory, Recent Progress in General Topology, Ed. by M. Hušek and J. van Mill, Elsevier Science Publishers, 1992.
- A. V. Arhangel′skii, On condensations of $C_p$-spaces onto compacta, Proc. Amer. Math. Soc. 128 (2000), no. 6, 1881–1883. MR 1751998, DOI 10.1090/S0002-9939-00-05758-0
- A. V. Arhangel’skiĭ and O. I. Pavlov, A note on condensation of $C_p(X)$ onto compacta, preprint.
- Fidel Casarrubias-Segura, On compact weaker topologies in function spaces, Topology Appl. 115 (2001), no. 3, 291–298. MR 1848129, DOI 10.1016/S0166-8641(00)00069-9
- G. Debs, Points de continuité d’une fonction séparément continue. II, Proc. Amer. Math. Soc. 99 (1987), no. 4, 777–782 (French, with English summary). MR 877056, DOI 10.1090/S0002-9939-1987-0877056-9
- A. Dow, H. Junnila, and J. Pelant, Weak covering properties of weak topologies, Proc. London Math. Soc. (3) 75 (1997), no. 2, 349–368. MR 1455860, DOI 10.1112/S0024611597000385
- A. Dow, H. Junnila, and J. Pelant, More on weak covering properties of weak topologies, preprint.
- G. A. Edgar, Measurability in a Banach space. II, Indiana Univ. Math. J. 28 (1979), no. 4, 559–579. MR 542944, DOI 10.1512/iumj.1979.28.28039
- R. G. Haydon, Boolean rings that are Baire spaces, Serdica Math. J., (2001), no. 2, 91-106.
- J. E. Jayne, I. Namioka, and C. A. Rogers, $\sigma$-fragmentable Banach spaces, Mathematika 39 (1992), no. 2, 197–215. MR 1203276, DOI 10.1112/S0025579300014935
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Michel Talagrand, Comparaison des boreliens d’un espace de Banach pour les topologies fortes et faibles, Indiana Univ. Math. J. 27 (1978), no. 6, 1001–1004 (French). MR 511253, DOI 10.1512/iumj.1978.27.27067
Bibliographic Information
- Dennis K. Burke
- Affiliation: Department of Mathematics, Miami University, Oxford, Ohio 45056-9987
- Email: burkedk@muohio.edu
- Roman Pol
- Affiliation: Faculty of Mathematics, Informatics and Mechanics, Warsaw University, 00-927 Warsaw, Poland
- Email: pol@mimuw.edu.pl
- Received by editor(s): July 9, 2002
- Received by editor(s) in revised form: August 1, 2002
- Published electronically: June 30, 2003
- Additional Notes: The second author is grateful to the Department of Mathematics and Statistics at Miami University for its hospitality during the work on this paper
The authors wish to thank the referee for a very prompt report with suggestions which improved the exposition of this paper - Communicated by: Alan Dow
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3955-3959
- MSC (2000): Primary 54C35; Secondary 28A05, 54H05
- DOI: https://doi.org/10.1090/S0002-9939-03-06983-1
- MathSciNet review: 1999946