INDUCED LOCAL ACTIONS ON TAUT AND STEIN MANIFOLDS

ANDREA IANNUZZI

(Communicated by Mohan Ramachandran)

Abstract. Let $G = \langle \mathbb{R}, + \rangle$ act by biholomorphisms on a taut manifold X. We show that X can be regarded as a G-invariant domain in a complex manifold X^* on which the universal complexification $(\mathbb{C}, +)$ of G acts. If X is also Stein, an analogous result holds for actions of a larger class of real Lie groups containing, e.g., abelian and certain nilpotent ones. In this case the question of Steinness of X^* is discussed.

Introduction

Let X be a complex manifold endowed with an action by biholomorphisms of a connected real Lie group G, i.e., X is a complex G-manifold. If the Lie algebra of the universal complexification $G^\mathbb{C}$ of G is the complexification of $\text{Lie}(G)$, then one obtains an induced local $G^\mathbb{C}$-action by integrating the \mathbb{C}-linear extension of the infinitesimal generator associated to the G-action. In many cases this can be understood as the restriction of a global $G^\mathbb{C}$-action, that is, it is possible to realize X as a G-invariant domain in a complex $G^\mathbb{C}$-manifold X^* to which we will refer as a globalization of the local $G^\mathbb{C}$-action. For instance, by a result of P. Heinzner ([H]) if X is Stein and G compact, then there exists a Stein globalization X^* with the following universal property: every holomorphic G-equivariant map on X to a complex $G^\mathbb{C}$-manifold extends $G^\mathbb{C}$-equivariantly on X^*.

Furthermore, for X Stein and G with polar complexification $G^\mathbb{C}$ and cocompact discrete subgroup Γ such that $G^\mathbb{C}/\Gamma$ is Stein, equivalent conditions for the existence of a Stein universal globalization are given in [CT]. These can be verified to hold in many concrete situations, however it seems not to be known whether in this setting a globalization always exists. Here we first consider $(\mathbb{R}, +)$-actions on taut manifolds and we prove the following:

Let X be a taut \mathbb{R}-manifold. Then there exists a universal globalization X^* of the induced local \mathbb{C}-action.

Note that one cannot expect X^* to be taut unless the \mathbb{R}-action on X is trivial. If X is also Stein, we show that a similar result holds for G in the above-mentioned class of real Lie groups (Corollary 3). In this case it is natural to ask whether such
a universal globalization is also Stein. For $G = (\mathbb{R}, +)$ it turns out that this is equivalent to a positive answer to the following open question:

Let Y be a complex manifold and assume there exist lower semicontinuous functions $\alpha, \beta : Y \to \mathbb{R}$ such that $\Omega := \{ (\lambda, y) \in \mathbb{C} \times Y : -\beta(y) < \text{Im} \lambda < \alpha(y) \}$ is Stein. Is Y then Stein?

We conclude by pointing out particular cases where this holds true.

Existence of Globalizations

For basic facts and results on local actions and their globalizations we refer to [IL] and more generally to [HI, §2-3], from which most notations are inherited. However note that all manifolds are assumed to be Hausdorff (cf. [HI, §3]).

Theorem 1. Let X be a taut \mathbb{R}-manifold. Then there exists a universal globalization X^* of the induced local \mathbb{C}-action.

Proof. Note that every leaf Σ of Palais’ foliation with respect to the induced local \mathbb{C}-action is a non-compact Riemann surface, since its projection $p_{|\Sigma} : \Sigma \to \mathbb{C}$ is not constant. In particular Σ is holomorphically separable and [HI] Corollary, p. 438 applies to show univalency of such a local action. Then by [HI, Theorem 2, p. 38] there exists a possibly non-Hausdorff universal globalization X^*. The result will follow by showing that X^* is Hausdorff.

For this suppose that there exist elements x_1 and x_2 in X^* which are not topologically separable. Since $X^* = \mathbb{C} \cdot X$ and X is \mathbb{R}-invariant one may assume that $x_1 \in X$ and $x_2 = it \cdot x_0$ with $x_0 \in X$ and $t \in \mathbb{R}^{>0}$. Note that X is Hausdorff, thus $x_2 \notin X$ and consequently the local \mathbb{C}-orbit through x_0 has necessarily complex dimension one. Then one can choose a local slice $f : \mathbb{B}^{n-1}(1) \to X$ transversal to $\mathbb{C} \cdot x_0$ with $f(0) = x_0$ and a neighborhood $U \subset \mathbb{C}$ of 0 such that $\varphi : U \times \mathbb{B}^{n-1}(1) \to X$ defined by $\varphi(z, s) := z \cdot f(s)$ is a chart of X. Here n is the complex dimension of X and $\mathbb{B}^{n-1}(1) := \{ s \in \mathbb{C}^{n-1} : |s| < r \}$ for all $r > 0$.

Let us call such a chart an adapted chart of X in x_0.

Now $it \cdot \varphi(rU \times \mathbb{B}^{n-1}(r))$ are open neighborhoods of x_2 for all $0 < r < 1$ and we are assuming that x_1 and x_2 are not separable. Therefore there exists a sequence (z_j, s_j) convergent to $(0, 0)$ in $U \times \mathbb{B}^{n-1}(1)$ such that $X \ni it \cdot \varphi(z_j, s_j) \to x_1$. Thus for $y_j := \varphi(z_j, s_j)$ one has $X \ni y_j \to x_0$ and $X \ni it \cdot y_j \to x_1$. Now recall that X is orbit-connected (cf. [CTT] Lemma 1.6) and \mathbb{R}-invariant in X^*. Then by considering an adapted chart of X in x_1 one checks that there exists $\epsilon > 0$ such that $S := \{ z \in \mathbb{C} : -\epsilon < \text{Im} z < \epsilon + \epsilon \} \subset \Omega(y_j)$ for all $j > 0$, where by definition $\Omega(x) := \{ z \in \mathbb{C} : z \cdot x \in X \}$ for all $x \in X$.

Define a sequence of holomorphic functions $h_j : S \to X$ by $h_j(z) := z \cdot y_j$, let $a_0, b_0 \in \mathbb{R}^{>0}$ be given by $\Omega(x_0) = \{ z \in \mathbb{C} : -b_0 < \text{Im} z < a_0 \}$ and note that $it \cdot x_0 \notin X$, hence $a_0 \leq t$. Moreover $h_j(0) \to x_0$ while $ia_0 \cdot x_0 \notin X$ and $is \cdot x_0 \in X$, for s smaller than a_0 and close to it, imply that $h_j(a_0) \to \infty$. Since X is taut, this gives a contradiction and concludes the proof.

Remark 2. Since X is \mathbb{R}-invariant and orbit-connected in X^*, there exist lower semicontinuous positive functions $a, b : X \to \mathbb{R}^{>0}$ such that

$$\Omega(x) = \{ z \in \mathbb{C} : -b(x) < \text{Im} z < a(x) \}$$
for all \(x \) in \(X \), where \(\Omega(x) := \{ z \in \mathbb{C} : z \cdot x \in X \} \). An analogous argument as in the above proof applies to show that on a taut manifold, \(a \) and \(b \) are continuous (if \(X \) is Stein one knows that \(-a\) and \(-b\) are plurisubharmonic [F]).

Let \(G \) be a real Lie group with polar complexification \(G^C \), i.e., the \(G \)-equivariant map \(G \times \mathfrak{g} \to G^C \) given by \((g, \xi) \to g \exp i \xi\) is a real analytic diffeomorphism. Furthermore assume that \(G \) admits a discrete cocompact subgroup \(\Gamma \) such that \(G^C/\Gamma \) is Stein. For instance all abelian and compact real Lie groups are of this kind or more generally products of the form \(K \times N \), with \(K \) compact and \(N \) simply connected and nilpotent with rational structure constants (see [Ma, GH]). Since \(G^C \) is polar, the Lie algebra of \(G^C \) is the complexification of \(\mathfrak{g} \), the Lie algebra of \(G \). As a consequence if \(G \) acts on a complex manifold one obtains a holomorphic local action of the complexification \(G^C \) by integrating the holomorphic vector fields given by the \(G \)-action. For \(G \) as above one has

Corollary 3. Let \(X \) be a taut and Stein \(G \)-manifold. Then there exists a universal globalization \(X^* \) of the induced local \(G^C \)-action.

Proof. For \(\eta \in \mathfrak{g} \), consider the \(\mathbb{R} \)-action on \(X \) defined by \(t \cdot x := (\exp t \eta) \cdot x \) and denote by \(X^*_\eta \) the universal globalization of the induced local \(\mathbb{C} \)-action given by the above theorem. Then the corollary is a consequence of [CTT, Corollary 3.7]. \(\square \)

For an action of a compact Lie group \(G \) on a Stein manifold the universal globalization \(X^* \) is automatically Stein ([H]). It would be interesting to know whether this remains true in the case where \(G \) is not compact and \(X^* \) exists. For \(G = \mathbb{R} \) one has

Proposition 4. The following statements are equivalent:

i) Let \(X \) be a Stein \(\mathbb{R} \)-manifold with universal globalization \(X^* \). Then \(X^* \) is Stein.

ii) Let \(Y \) be a complex manifold and assume there exist lower semicontinuous functions \(\alpha, \beta : Y \to \mathbb{R} \) such that \(\Omega := \{ (\lambda, y) \in \mathbb{C} \times Y : -\beta(y) < Im \lambda < \alpha(y) \} \) is Stein. Then \(Y \) is Stein.

Proof. Let \(\Omega \) be as in ii) and consider the \(\mathbb{R} \)-action by left multiplication on the first component of \(\mathbb{C} \times Y \). Then [CTT, Lemma 1.5] applies to show that \(\mathbb{C} \times Y \) is the universal globalization of \(\Omega \). Thus if i) holds, then \(\mathbb{C} \times Y \) is Stein and consequently so is \(Y \), implying ii).

Conversely for \(X \) as in i) let \(\mathbb{R} \) act diagonally on \(\mathbb{C} \times X \) and by left multiplication on the first component of \(\mathbb{C} \times X^* \). Then the map \(f : \mathbb{C} \times X \to \mathbb{C} \times X^* \) given by \((\lambda, x) \to (\lambda, \lambda^{-1} \cdot x)\) is easily checked to be an \(\mathbb{R} \)-equivariant open embedding. In particular \(f(\mathbb{C} \times X) \) is a Stein \(\mathbb{R} \)-invariant subdomain of \(\mathbb{C} \times X^* \).

Now let \(a, b : X \to \mathbb{R}^{>0} \) be as in Remark 2, fix \(y \in X^* \) and choose \(x \in X \) and \(t \in \mathbb{R} \) such that \(y = it \cdot x \). One has that

\[
(\lambda, y) = (\lambda, \lambda^{-1} \cdot (\lambda + it) \cdot x)
\]

belongs to \(f(\mathbb{C} \times X) \) if and only if \((\lambda + it) \cdot x \in X\), i.e., \(-b(x) - t < Im \lambda < a(x) - t \).

By defining \(\alpha(y) = a(x) - t \) and \(\beta(y) = b(x) + t \) (which is easily verified not to depend on the choice of \(x \) and \(t \)) for all \(y \in X^* \) one has

\[
f(\mathbb{C} \times X) = \{ (\lambda, y) \in \mathbb{C} \times X^* : -\beta(y) < Im \lambda < \alpha(y) \}\]
and statement i) follows from ii) by letting $\Omega = f(\mathbb{C} \times X)$ in $\mathbb{C} \times X^*$, which concludes the proof.

Remark 5. In the following cases it is easy to check that statement ii) holds:

1) Y is holomorphically convex.

For this, first note that for any open Stein neighborhood U in Y the restrictions of $-\alpha$ and $-\beta$ to U define the Stein domain $\Omega \cap (\mathbb{C} \times U)$ in $\mathbb{C} \times U$. It follows that $-\alpha$ and $-\beta$ are plurisubharmonic (see, e.g., [V]).

Now recall that each fiber F of the Remmert reduction of Y (cf. [GR, p. 221]) is a connected compact subspace. In particular α and β are constant on F, thus $F \cong \{z\} \times F \subset \Omega$ for any fixed z in \mathbb{C} with $-\beta|_F < \text{Im} \, z < \alpha|_F$ and consequently F is holomorphically separable. By compactness and connectness it follows that F consists of a single point, hence Y is Stein.

2) Y is a domain in a Stein manifold \hat{Y}.

Here Ω can be regarded as an open Stein \mathbb{R}-invariant subdomain of $\mathbb{C} \times \hat{Y}$, where \mathbb{R} acts by left multiplication on the first component. Since $\mathbb{C} \times \hat{Y}$ is Stein, then Ω is locally Stein ([DG]).

Moreover the quotient map $\mathbb{C} \times \hat{Y} \to (\mathbb{C} \times \hat{Y})/\mathbb{Z}$ is locally biholomorphic, therefore Ω/\mathbb{Z} is locally Stein in $(\mathbb{C} \times \hat{Y})/\mathbb{Z} \cong \mathbb{C}^* \times \hat{Y}$, which is Stein, and consequently so is Ω/\mathbb{Z}. Finally Y is easily checked to be biholomorphic to the categorical quotient of Ω/\mathbb{Z} with respect to the natural induced S^1-action, thus it is Stein ([H § 6.5]).

Remark 6. As already noted in the proof of Theorem 1, a complex \mathbb{R}-manifold admits a universal globalization X^* which is possibly non-Hausdorff. Note that the same argument used to prove Proposition 4 applies to show the analogous result in the case where X^* and Y are assumed to be in the category of possibly non-Hausdorff complex manifolds.

References

[F] F. Forstnerič, Actions of (\mathbb{R}, $+$) and (\mathbb{C}, $+$) on complex manifolds, Math. Z. 223 (1996), 123–153. MR 97f:32011

Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, I-40126 Bologna, Italy

E-mail address: iannuzzi@dm.unibo.it

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use