Accessible domains in the Heisenberg group
HTML articles powered by AMS MathViewer
- by Zoltán M. Balogh and Roberto Monti
- Proc. Amer. Math. Soc. 132 (2004), 97-106
- DOI: https://doi.org/10.1090/S0002-9939-03-06978-8
- Published electronically: March 25, 2003
- PDF | Request permission
Abstract:
We study the problem of accessibility of boundary points for domains in the sub–Riemannian setting of the first Heisenberg group. A sufficient condition for accessibility is given. It is a Dini–type continuity condition for the horizontal gradient of the defining function. The sharpness of this condition is shown by examples.References
- Z. M. Balogh, Size of characteristic sets and functions with prescribed gradients, to appear in J. Reine Angew. Math.
- Z. M. Balogh, M. Rickly, F. Serra Cassano, Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric, to appear in Publicacions Math.
- Luca Capogna and Nicola Garofalo, Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics, J. Fourier Anal. Appl. 4 (1998), no. 4-5, 403–432. MR 1658616, DOI 10.1007/BF02498217
- Luca Capogna, Nicola Garofalo, and Duy-Minh Nhieu, Examples of uniform and NTA domains in Carnot groups, Proceedings on Analysis and Geometry (Russian) (Novosibirsk Akademgorodok, 1999) Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 2000, pp. 103–121. MR 1847513
- Luca Capogna and Puqi Tang, Uniform domains and quasiconformal mappings on the Heisenberg group, Manuscripta Math. 86 (1995), no. 3, 267–281. MR 1323792, DOI 10.1007/BF02567994
- B. Franchi, R. Serapioni, F. Serra Cassano, Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), no. 3, 479–531.
- Nicola Garofalo and Duy-Minh Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), no. 10, 1081–1144. MR 1404326, DOI 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
- Nicola Garofalo and Dimiter Vassilev, Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups, Math. Ann. 318 (2000), no. 3, 453–516. MR 1800766, DOI 10.1007/s002080000127
- Mikhael Gromov, Carnot-Carathéodory spaces seen from within, Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 79–323. MR 1421823
- W. Hansen and H. Hueber, The Dirichlet problem for sub-Laplacians on nilpotent Lie groups—geometric criteria for regularity, Math. Ann. 276 (1987), no. 4, 537–547. MR 879533, DOI 10.1007/BF01456983
- David S. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. I, J. Functional Analysis 43 (1981), no. 1, 97–142. MR 639800, DOI 10.1016/0022-1236(81)90040-9
- J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443–492. MR 181815, DOI 10.1002/cpa.3160180305
- G. Levin and F. Przytycki, External rays to periodic points, Israel J. Math. 94 (1996), 29–57. MR 1394566, DOI 10.1007/BF02762696
- R. Monti, D. Morbidelli, Regular domains in homogeneous groups, Preprint.
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103–147. MR 793239, DOI 10.1007/BF02392539
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- F. Przytycki, Accessibility of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps, Fund. Math. 144 (1994), no. 3, 259–278. MR 1279481
- Stephen Semmes, On the nonexistence of bi-Lipschitz parameterizations and geometric problems about $A_\infty$-weights, Rev. Mat. Iberoamericana 12 (1996), no. 2, 337–410. MR 1402671, DOI 10.4171/RMI/201
- Anna Zdunik, On biaccessible points in Julia sets of polynomials, Fund. Math. 163 (2000), no. 3, 277–286. MR 1758329, DOI 10.4064/fm-163-3-277-286
Bibliographic Information
- Zoltán M. Balogh
- Affiliation: Mathematisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland
- Email: zoltan.balogh@math-stat.unibe.ch
- Roberto Monti
- Affiliation: Mathematisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland
- Email: roberto.monti@math-stat.unibe.ch
- Received by editor(s): August 8, 2002
- Published electronically: March 25, 2003
- Communicated by: Juha M. Heinonen
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 97-106
- MSC (2000): Primary 43A80, 22E30
- DOI: https://doi.org/10.1090/S0002-9939-03-06978-8
- MathSciNet review: 2021252