Sequential and continuum bifurcations in degenerate elliptic equations
HTML articles powered by AMS MathViewer
- by R. E. Beardmore and R. Laister
- Proc. Amer. Math. Soc. 132 (2004), 165-174
- DOI: https://doi.org/10.1090/S0002-9939-03-06979-X
- Published electronically: May 7, 2003
- PDF | Request permission
Abstract:
We examine the bifurcations to positive and sign-changing solutions of degenerate elliptic equations. In the problems we study, which do not represent Fredholm operators, we show that there is a critical parameter value at which an infinity of bifurcations occur from the trivial solution. Moreover, a bifurcation occurs at each point in some unbounded interval in parameter space. We apply our results to non-monotone eigenvalue problems, degenerate semi-linear elliptic equations, boundary value differential-algebraic equations and fully non-linear elliptic equations.References
- Antonio Ambrosetti, Jesus Garcia Azorero, and Ireneo Peral, Quasilinear equations with a multiple bifurcation, Differential Integral Equations 10 (1997), no.Β 1, 37β50. MR 1424797
- D. G. Aronson and L. A. Peletier, Large time behaviour of solutions of the porous medium equation in bounded domains, J. Differential Equations 39 (1981), no.Β 3, 378β412. MR 612594, DOI 10.1016/0022-0396(81)90065-6
- Henri Berestycki, On some nonlinear Sturm-Liouville problems, J. Differential Equations 26 (1977), no.Β 3, 375β390. MR 481230, DOI 10.1016/0022-0396(77)90086-9
- Henri Berestycki and Maria J. Esteban, Existence and bifurcation of solutions for an elliptic degenerate problem, J. Differential Equations 134 (1997), no.Β 1, 1β25 (English, with English and French summaries). MR 1429089, DOI 10.1006/jdeq.1996.3165
- K.P. Hadeler, Free boundary problems in biology, in Free Boundary Problems: Theory and Applications Vol.II, eds. A. Fasano and M. Primicerio, Pitman Advanced Publishing Program, Pitman, New York, 1983.
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
- Man Kam Kwong and Li Qun Zhang, Uniqueness of the positive solution of $\Delta u+f(u)=0$ in an annulus, Differential Integral Equations 4 (1991), no.Β 3, 583β599. MR 1097920
- R. Laister and R. E. Beardmore, Transversality and separation of zeros in second order differential equations, Proc. AMS., to appear.
- M. A. Lewis, Spatial coupling of plant and herbivore dynamics: the contribution of herbivore dispersal to transient and persistant βwavesβ of damage, Theoretical Population Biology 45 (1994), 277β312.
- P.-L. Lions, Structure of the set of steady-state solutions and asymptotic behaviour of semilinear heat equations, J. Differential Equations 53 (1984), no.Β 3, 362β386. MR 752205, DOI 10.1016/0022-0396(84)90031-7
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
- Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487β513. MR 0301587, DOI 10.1016/0022-1236(71)90030-9
- Alexander A. Samarskii, Victor A. Galaktionov, Sergei P. Kurdyumov, and Alexander P. Mikhailov, Blow-up in quasilinear parabolic equations, De Gruyter Expositions in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 1995. Translated from the 1987 Russian original by Michael Grinfeld and revised by the authors. MR 1330922, DOI 10.1515/9783110889864.535
- C. A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc. (3) 45 (1982), no.Β 1, 169β192. MR 662670, DOI 10.1112/plms/s3-45.1.169
- Stewart C. Welsh, A priori bounds and nodal properties for periodic solutions to a class of ordinary differential equations, J. Math. Anal. Appl. 171 (1992), no.Β 2, 395β406. MR 1194089, DOI 10.1016/0022-247X(92)90353-F
- Gordon Thomas Whyburn, Topological analysis, Second, revised edition, Princeton Mathematical Series, No. 23, Princeton University Press, Princeton, N.J., 1964. MR 0165476
Bibliographic Information
- R. E. Beardmore
- Affiliation: Department of Mathematics, Imperial College, South Kensington, London, SW7 2AZ, United Kingdom
- Email: r.beardmore@ic.ac.uk
- R. Laister
- Affiliation: Department of Mathematics, University of the West of England, Frenchay Campus, Bristol, United Kingdom
- Email: robert.laister@uwe.ac.uk
- Received by editor(s): May 13, 2002
- Received by editor(s) in revised form: August 21, 2002
- Published electronically: May 7, 2003
- Communicated by: Carmen C. Chicone
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 165-174
- MSC (1991): Primary 34A09, 34B60, 35B32, 35J60, 35J70
- DOI: https://doi.org/10.1090/S0002-9939-03-06979-X
- MathSciNet review: 2021259