GLOBAL PROPERTIES OF THE LATTICE OF Π^0_1 CLASSES

DOUGLAS CENZER AND ANDRÉ NIES

(Communicated by Carl G. Jockusch, Jr.)

Abstract. Let E_Π be the lattice of Π^0_1 classes of reals. We show there are exactly two possible isomorphism types of end intervals, $[P, 2^\omega]$. Moreover, finiteness is first order definable in E_Π.

1. Introduction

The structure of the lattice E_Π of Π^0_1 classes has been investigated in several recent papers, for instance, [3]. A central theme is to compare and contrast the structure with the lattice E of computable enumerable sets.

In this paper, we solve a number of open problems from the 1999 AMS Summer Conference on Computability Theory. One general problem is to determine which subsets invariant under automorphisms are definable in a given structure. In particular, this is relevant for subsets which are natural in some sense. For E_Π, an example is the set of finite classes. We show that this set is definable in E_Π, which solves the first part of Problem 6.1 in [2]. The Cantor-Bendixson rank is an important way of classifying Π^0_1 classes. We solve Problem 6.2 of [2] by showing that the family of countable Π^0_1 classes of rank α is definable if and only if $\alpha < \omega$.

Intervals of the lattice E_Π were first studied in [3], where it was shown that, in contrast to the lattice E, there are finite initial intervals in the quotient lattice $E_\Pi/ =^*$ which are not Boolean algebras. An important problem here is to characterize all the possible intervals. We show here that there are exactly two possible isomorphism types of end intervals, $[P, 2^\omega]$, which answers a question of Herrmann (Problem 6.6 of [2]) and also Problem 9.7 of [8]. As a tool, we prove results on the complexity of possible representations of E and other structures, which are of interest by themselves. In recent work, Nies has found a Σ_3 sentence separating the two lattices.

2. Preliminaries

2.1. Some notation. As in [3] we will be applying some results on effective Boolean algebras and coding due to Nies [10, 11, 12] and also Harrington and Nies [9]. In the first paper, we used the language of c.e. ideals of the computable dense Boolean algebra rather than the language of Π^0_1 classes, to conform to the presentation of...
Here we will translate some of this background material into the language of Π_1^0 classes, as in [12][13][14].

The underlying computable dense Boolean algebra Q may be thought of as the family of clopen subsets of $\{0,1\}^\omega$. For any finite sequence σ, let $I(\sigma) = \{x : \sigma \preceq x\}$. Each clopen set has a unique representation as a finite union of disjoint intervals $I(\sigma_1) \cup \cdots \cup I(\sigma_k)$, where each σ_i has the same length and k is taken to be as small as possible. Then the join (\lor) and meet (\land) operations are clearly computable, as well as the complement operation and the partial ordering relation on Q.

A c.e. Boolean algebra is given by a model $(\mathbb{N}, \leq, \lor, \land)$ such that \leq is a c.e. relation which is a pre-ordering, \lor, \land are total computable binary functions, and the quotient structure $B = (\mathbb{N}, \leq, \lor, \land)/ \approx$ is a Boolean algebra (where $n \approx m \iff n \leq m \land m \leq n$). We can suppose that $0 \in \mathbb{N}$ names the least and $1 \in \mathbb{N}$ the greatest element of B. For Σ^0_k-Boolean algebras, one requires that \leq be Σ^0_2 and that \lor, \land be computable in $\emptyset^{(k-1)}$. For a Σ^0_k Boolean algebra B, let

$$I(B) := \text{ the lattice of } \Sigma^0_k \text{-ideals of } B.$$

Clearly, c.e. Boolean algebras correspond to c.e. ideals of Q and similarly for computable algebras and ideals. At the same time an ideal I of Q corresponds to a Π_1^0 class P in that $I = \{U \in Q : P \cap U = \emptyset\}$ and $P = \{0,1\}^\omega - \bigcup I$. We can use this last equation to assign index sets for Π_1^0 classes (as in [14]). Let $\sigma_0, \sigma_1, \ldots$ enumerate $\{0,1\}^{<\omega}$ and let W_e be the eth c.e. subset of ω, as usual. Then the eth Π_1^0 class is given by

$$P_e = \{0,1\}^\omega - \bigcup_{n \in W_e} I(\sigma_n).$$

An ideal I in a Boolean algebra B is said to be principal if there is some b such that $I = \{a : a \leq b\}$. The ideal I corresponding to a Π_1^0 class P as above is principal if and only if P is clopen. Thus, we will refer to a non-clopen Π_1^0 class P as nonprincipal. For any Π_1^0 class P, let $S(P)$ be the lattice of Π_1^0 classes Q such that $P \subseteq Q$.

2.2. An effectively dense Σ^0_3 Boolean algebra. A c.e. Boolean algebra B is called effectively dense [9] if there is a computable F such that $\forall x \ [F(x) \leq x]$ and $\forall x \neq 0 \ [0 < F(x) < x]$. More generally, a Σ^0_k Boolean algebra B is effectively dense if the above holds with some $F \leq_T \emptyset^{(k-1)}$. We first summarize the construction from [9] of an effectively dense Σ^0_3 Boolean algebra from an arbitrary nonprincipal Π_1^0 class P. We will present these results from the point of view of Π_1^0 classes rather than c.e. ideals.

The following technical lemma shows that we can make the intervals $I(\sigma_n)$ in disjoint.

Lemma 2.1. For any Π_1^0 class P, there is a c.e. set A such that $P = 2^{\omega} - \bigcup_{n \in A} I(\sigma_n)$, where for $m \neq n$, $I(\sigma_m) \cap I(\sigma_n) = \emptyset$.

Proof. Let $2^{\omega} - P = \bigcup_n I(\tau_n)$, for some computable sequence $\{\tau_n\}$. For each n, express the clopen set $I(\tau_n) = \bigcup_{m < n} I(\tau_m)$ as a finite union $\bigcup_{k \in C_n} I(\sigma_k)$ and let $A = \bigcup_{n < \omega} C_n$. \hfill \square

The underlying lattice E_{Π} of Π_1^0 classes may be viewed as a Π_1^0 structure using the representation given by [9]. That is, there are recursive functions m and j such that $P_a \cup P_b = P_{j(a,b)}$ and $P_a \cap P_b = P_{m(a,b)}$, and the relation “$P_a = P_b$” is Π_2^0.

Let P be a nonprincipal Π^0_3 class. We write $Q_1 \cap Q_2 = P$ if $Q_1 \cap Q_2 = P$ and $Q_1 \cup Q_2 = 2^\omega$, and $P \subseteq Q$ if there exists Q_2 such that $Q \cap Q_2 = P$. We observe that for any clopen set V, $(P \cup V) \cap (P \cup V^c) = P$, so that $P \subseteq P \cup V$. In $[P, 2^\omega]$, we can define the Σ^0_3 Boolean algebra of complemented elements as
\[B(P) = \{ X : P \subseteq X \}. \]

This is indeed a Σ^0_3 Boolean algebra, since $P_a \in B(P) \iff (3b) [P_a \cap P_b = P \& P_a \cup P_b = 2^\omega]$.

In the following, we recast Definition 4.5 from [12] in the language of Π^0_3 classes.

Definition 2.2. Q is a locally principal extension of P if $P \subseteq Q$ and $Q \setminus P$ is open.

This has a first order definition in the lattice \mathcal{E}_P, by the following.

Lemma 2.3. Q is a locally principal extension of P if and only if $P \subseteq Q$ and, for all clopen sets V, if $P \cap V = \emptyset$, then $Q \cap V$ is clopen.

Proof. Let Q be a Π^0_3 class with $P \subseteq Q$. Suppose first that $Q \setminus P$ is open and let V be a clopen set disjoint from P. Then $Q \cap V$ is closed, since both Q and V are closed. $Q \cap V$ is also open, since $Q \cap V = (Q \setminus P) \cap V$. On the other hand, suppose that Q satisfies the condition of the lemma. Then for any $x \in Q \setminus P$, choose a clopen set V such that $x \notin V$ and $P \cap V = \emptyset$. It follows that $Q \cap V$ is a clopen subset of $Q \setminus P$ containing x. Thus $Q \setminus P$ is an open set. \hfill \Box

We show that our definition is, in fact, the dual of the definition for c.e. ideals of Q from [12]. An ideal B is a locally principal subideal of A if $B \subseteq A$ and $\forall e \in A [0, e] \cap B$ is principal. The immediate dual (with Q, P corresponding to B, A) is $Q \supseteq P$, and for all clopen $W \supseteq P$, $W \cup Q$ is clopen. Now let $V = W^c$, and note that $V^c \cup Q$ clopen iff $V \cap Q$ clopen.

Lemma 2.4. For any nonclopen Π^0_3 class P, there exists a locally principal extension Q of P such that $P \not\subseteq Q$.

Proof. By Lemma 2.3 let $2^\omega \setminus P = \bigcup_n U_n$, where $\{ U_n \}_{n < \omega}$ is a computable sequence of disjoint intervals. Now choose a noncomputable c.e. set B and let $Q = 2^\omega \setminus \bigcup_{n \notin B} U_n$. Clearly, $P \subset Q$ and furthermore, $Q \setminus P = \bigcup_{n \notin B} U_n$ is an open set. Suppose by way of contradiction that R is a Π^0_3 class such that $Q \cup R = 2^\omega$ and $Q \cap R = P$. But this means that $2^\omega \setminus R = Q \setminus P$. Then $e \in B \iff R \cap U_n \neq \emptyset$, which is a co-c.e. condition, contradicting the assumption that B is not computable. \hfill \Box

If $P \subseteq Q$, we define in $B(Q)$ the filter
\[\mathcal{R}_P(Q) = \{ X : P \subseteq X \text{ & } Q \subseteq X \}. \]

Note that $\{ e : P_e \in \mathcal{R}_P(Q) \}$ is a Σ^0_3 set. Thus, we define the Σ^0_3 Boolean algebra
\[\mathcal{K} = B(Q)/\mathcal{R}_P(Q). \]

Recall that a Σ^0_3 Boolean algebra B is effectively dense [12] if there is a function f computable in $0'$ such that for any $a \neq 0^B$, $0 <^B f(a) <^B a$. The following result is obtained by dualizing Lemma 3.6 of [3]. (Note that this reverses the ordering of the Boolean algebra, but this process does not affect effective density. In other words, B is effectively dense just if the corresponding Boolean algebra with the reverse ordering is.)
Lemma 2.5. \(K \) is effectively dense.

2.3. A definability lemma. A result in Nies [12 Lemma 6.3]) will be very important for us. We translate the result into the notation of \(\Pi_1^0 \) classes and filters. (Actually, the result in [12] is more general, since it is proven for any effectively dense Boolean algebra \(B \), while we only apply the case \(B = Q \).

A filter \(F \) of \(B(Q) \) is \(k \)-acceptable if \(F \) has a \(\Sigma_k^0 \) index set and \(\mathcal{R}_P(Q) \subseteq F \). For example, \(\mathcal{R}_P(Q) \) itself is \(3 \)-acceptable.

A class \(C \) of filters of \(B(Q) \) containing \(\mathcal{R}_P(Q) \) is uniformly definable if, for some formula \(\psi(X; P_1, \ldots, P_n, P, Q) \) in the language of lattices with \(0, 1 \), \(F \in C \) if and only if there are parameters \(P_1, \ldots, P_n \in E \) such that

\[
F = \{ X : Q \sqsubseteq X \land E \models \psi(X; P_1, \ldots, P_n, P, Q) \}.
\]

Lemma 2.6 (Definability Lemma). Let \(P \) be a nonprincipal \(\Pi_1^0 \) class and let \(Q \) be a locally principal extension of \(P \) such that \(P \not\in Q \). Then the class of \(k \)-acceptable filters of \(B(Q) \) is uniformly definable for each odd \(k \geq 3 \).

The result is obtained dualizing the one in [12]. One uses induction over odd \(k \geq 3 \). As an illustration, consider \(k = 3 \). In the language of \(\Pi_1^0 \) classes, one proves that \(F \) is a \(3 \)-acceptable filter in \(B(Q) \) if and only if there is a parameter \(C \in E \), \(Q \subseteq C \), such that

\[
F = \{ X \in B(Q) : (\exists R \in \mathcal{R}_P(Q) \land R \sqsubseteq X \cup C) \}.
\]

3. Complexity of representations

In this section, we prove two results restricting the possible Turing complexity of representations of the relativized lattice \(E^N \), and of the lattice \(I(B) \) of ideals of an effectively dense \(\Sigma_k^0 \) Boolean algebra.

Suppose \(S \) is a finite signature containing an equality symbol \(\approx \) and constants \(c_0, c_1, \ldots \), and let \(D \) be the set of atomic relations and negations of atomic relations over \(S \) without free variables (typical examples of \(D \) are \(f c_n = f g c_m \) and \(-R c_n c_m \), where \(n, m \in \mathbb{N} \), \(f, g \) are unary function symbols and \(R \) is a binary relation symbol in \(S \)). A representation is a subset \(\mathcal{R} \) of \(D \) such that exactly one of an atomic relation or its negation is in \(\mathcal{R} \), and \(E_{\mathcal{R}} = \{ c_n, c_m : c_n \approx c_m \in \mathcal{R} \} \) is an equivalence relation compatible with \(\mathcal{R} \). In the following we identify \(c_n \) with the number \(n \). A pair \(\langle \mathcal{R}, \alpha \rangle \) is a representation of an \(S \)-structure \(A \) if \(\alpha : \mathbb{N} \to A \) is onto and the canonical \(S \)-structure on equivalence classes of \(E_{\mathcal{R}} \) is isomorphic to \(A \) via \(\alpha \). For \(Y \subseteq \mathbb{N} \), a subset of \(A \) is \(\Sigma_1^1(Y) \) if its preimage under \(\alpha \) is. If \(a = \alpha(n) \), we say that \(n \) is an index for \(a \).

For a countable \(S \)-structure \(A \) and \(Y \subseteq \mathbb{N} \), we write \(A \leq_T Y \) if there is a representation \(\langle \mathcal{R}, \alpha \rangle \) of \(A \) such that \(\mathcal{R} \leq_T Y \). In other words, for a relation symbol \(R \) in \(S \), say binary, and including \(\approx \), we can decide recursively in \(Y \) whether \(R n m \in \mathcal{R} \), and for a function symbol \(f \in S \), say binary, given \(n, m \), we can recursively in \(Y \) determine an index for \(f^A(\alpha(n), \alpha(m)) \).

Fact 3.1. Suppose \(A \leq_T Y \) via \(\langle \mathcal{R}, \alpha \rangle \), and \(U \) is a substructure whose domain is \(\Sigma_1^0(Y) \). Then \(U \leq_T Y \) via a representation \(\langle S, \beta \rangle \) such that, in addition, \(Y \) can decide if an atomic relation holds for \(\beta(n), \alpha(m) \).

Proof. To obtain \(\langle S, \beta \rangle \), choose a function \(f \leq_T Y \) such that \(rg(f) = \alpha^{-1}(U) \). Let \(\beta = \alpha \circ f \). \(\square \)
We prove propositions saying that the natural representations of \mathcal{E}^X and $\mathcal{I}(\mathcal{B})$ are not far from optimal.

Proposition 3.2. For each $X \subseteq \mathbb{N}$, $\mathcal{E}^X \not\leq_T X'$.

Proof. We use some concepts from Nies [10], which we review first. We need the notion of (uniform) coding of extended standard models of arithmetic (extended SMA). An extended SMA is a structure (M, U), where $M \cong \mathbb{N}$ and $U \subseteq M$. In general, a coding with parameters of a relational structure C of finite signature in a structure D is given by a scheme S of formulas $\varphi_D(x, \bar{p})$ (to code the domain) and $\varphi_R(x_1, \ldots, x_n; \bar{p})$ for each n-ary relation symbol R in the language of C (including equality \approx) such that, for an appropriate list \bar{t} of parameters in D, φ_\approx defines an equivalence relation on $\{x : D \models \varphi_S(x, \bar{t})\}$ and the structure defined on equivalence classes by the remaining formulas φ_R is isomorphic to C.

In [10] we show that (the relativizable structure) \mathcal{E} as a lattice satisfies, for some k, a coding condition $Co(k)$, which states that there is a scheme of Σ_k formulas with parameters so that, for each $X \subseteq \mathbb{N}$, an extended SMA $(M, U) \cong (\mathbb{N}, \bar{X}^{(k+1)})$ (viewed as a structure with two ternary and one unary relation) can be coded in \mathcal{E}^X.

We use an argument as in the proof of the Separation Theorem [10] Thm 2.1] to show the claim. Suppose that $\mathcal{E}^X \leq_T Y$ so that there is a representation (\mathcal{R}, α) of \mathcal{E}^X with \mathcal{R} recursive in Y (later, Y will be X'). Then the preimage under α of the successor relation of M is c.e. in $Y^{(k-1)}$. Hence there is a function $f \leq_T Y^{(k-1)}$ such that, for all n, $\alpha(f(n)) = n^M$ (i.e., $f(n)$ is an index for n in M). Then U (viewed as a subset of \mathbb{N}) is c.e. in $Y^{(k-1)}$ via the enumeration procedure which enumerates n into U iff the Σ_k-formula defining U (with a fixed list of parameters in \mathcal{E}^X) holds for $\alpha(f(n))$. Since $U = \bar{X}^{(k+1)}$, for $Y = X'$ this implies $\bar{X}^{(k+1)}$ c.e. in $X^{(k)}$, which is not the case.

In the following, we use notation from Nies [11].

Proposition 3.3. Suppose that the Σ^0_k-Boolean algebra \mathcal{B} is effectively dense. Then $\mathcal{I}(\mathcal{B}) \not\leq_T \emptyset^{(k)}$.

Proof. We prove the claim for $k = 1$, i.e., we show that $\mathcal{I}(\mathcal{B}) \not\leq_T \emptyset'$ for a c.e. effectively dense \mathcal{B}. For larger k, one relativizes this to $\emptyset^{(k-1)}$.

Choose a c.e. separating ideal I_0 (defined in [11], (7))] such that \mathcal{B}/I_0 is infinite, and let K be the lattice of Σ^0_3-ideals of \mathcal{B} which contain I_0. We show that

$$\mathcal{I}(\mathcal{B}) \leq_T \emptyset' \Rightarrow K \leq_T \emptyset^{(3)}.$$

This suffices since, by the proof of [11] Lemma 2.4], there is an interval $[C, D]_K$ isomorphic to \mathcal{E}^3, the lattice of Σ^0_3-sets. By Fact 3.1 if $K \leq_T \emptyset^{(3)}$, then also $[C, D]_K \leq_T \emptyset^{(3)}$, which contradicts Proposition 3.2 for $X = \emptyset^{(2)}$. Thus $\mathcal{I}(\mathcal{B}) \not\leq_T \emptyset'$.

To prove (2), assume that there is a representation (\mathcal{R}, α) of the lattice $\mathcal{I}(\mathcal{B})$, with \mathcal{R} Turing below \emptyset'. Note that \mathcal{B} is canonically isomorphic to the complemented elements in $\mathcal{I}(\mathcal{B})$, a Σ_1-definable subset of $\mathcal{I}(\mathcal{B})$. Hence from \mathcal{R}, using Fact 3.1, we can derive a presentation $(\mathcal{S}, \mathcal{B})$, for \mathcal{B} such that $\mathcal{S} \leq_T \emptyset'$, which we will use in the following. Let x, r, s range over \mathcal{B}.

Given a c.e. ideal $L \subseteq I_0$, let

$$J(L) = \{x \in \mathcal{B} : \exists r \in I_0 \forall s \in I_0 [s \wedge r \equiv 0 \Rightarrow x \wedge s \in L]\}.$$
In Nies [11, Lemma 2.3] it is shown that each \(J \in K \) is of the form \(J(L) \) for some c.e. \(L \). Thus, to obtain the desired representation of \(K \), we represent \(J \in L \) by an index for an \(L \) such that \(J = J(L) \). Note that

\[
J(L) = \{ x \in B : \exists \alpha \in \Lambda_0 \; I_0 \cap [0, \forall \wedge x] \subseteq L \}.
\]

Thus, by Fact 3.1, \(\{ x : x \in J(L) \} \) is \(\Sigma^0_2 \) with respect to \((S, P) \), and \(\Sigma^0_2 \) can be obtained uniformly in an \(R \)-index for \(L \). Then \(J(L_0) \subseteq J(L_1) \) is \(\Pi^0_1 \). For the lattice operations, given \(L_0, L_1 \) note that \(J = J(L_0) \cup J(L_1) \in K \), so there is \(L \) such that \(J = J(L) \). Since we can determine a \(\Sigma^0_2 \) index with respect to \(S \) for \(J \), and equality of \(\Sigma^0_2 \)-ideals (under the representation \(S \)) of \(B \) is \(\Pi^0_2 \), we can find an index for \(L \) using \(\theta^{(3)} \) as an oracle. For \(J(L_0) \cap J(L_1) \) one argues similarly. \(\square \)

4. Nonisomorphic end intervals of \(\mathcal{E}_H \)

In this section, we apply the results from Sections 2 and 3 to the lattice of \(\Pi^0_1 \) classes to show that there are exactly two distinct types of nontrivial end intervals \([P, 1] \) of \(\mathcal{E}_H \). It is an easy observation that there are at most two, those where \(P \) is principal and where \(P \) is nonprincipal \(\emptyset \).

Theorem 4.1. Let \(P \) be nonprincipal. Then \([P, 1]_\Theta \) is not isomorphic to \(\mathcal{E}_H \).

Proof. Suppose for a contradiction that \([P, 1]_\Theta \cong \mathcal{E}_H \) via \(\Phi \), but \(P \) is nonprincipal. If the structure \(X \) is coded in \([P, 1]_\Theta \) with first-order formulas and parameters \(P_1, \ldots, P_m \), we will denote by \(\Phi(X) \) the structure coded in \(\mathcal{E}_H \) with the same formulas and the parameter list \(\Phi(P_1), \ldots, \Phi(P_m) \). (Thus, \(X \) behaves the same way in \([P, 1]_\Theta \) as \(\Phi(X) \) in \(\mathcal{E}_H \).)

By Lemma 2.5 choose a locally principal extension \(Q \) of \(P \) such that \(P \not\subseteq Q \). Then, by Lemma 2.5, the \(\Sigma^0_2 \) Boolean algebra \(B = B(Q)/R_P(Q) \) is effectively dense. Hence, by Proposition 3.3 for \(k = 3, \mathcal{I}(B) \not\leq_T \emptyset^{(3)} \). Taking complements in \(B, \mathcal{I}(B) \) is isomorphic to \((B, \mathcal{I}(B)) \) of the lattice \(H \) of \(\Sigma^0_2 \) filters of \(B(Q) \) containing \(R_P(Q) \), so \(H \not\leq_T \emptyset^{(3)} \). Note that \(\Phi(P) = \emptyset \). Let \(\bar{Q} = \Phi(Q) \), a nonprincipal \(\Pi^0_1 \) class. Note that \(\Phi(R_P(Q)) = R_{\Phi(Q)} \), so \(\bar{B} = B(\bar{Q})/R_{\Phi}(\bar{Q}) \) is the isomorphic image of \(B \) under \(\Phi \). For the “\(B \)-side”, we have by the Definability Lemma 2.4 and the remark after that, for each \(F \in H \), there is a \(C \subseteq Q \) such that

\[
F = \{ X \in B(Q) : (\exists R \in R_P(Q))(R \subseteq X \cup C) \}.
\]

So this situation is copied to the \(\bar{B} \)-side by \(\Phi \). There, \(R_{\Phi}(\bar{Q}) \) is the family of clopen sets containing \(\bar{Q} \). For \(C \in \mathcal{E}_H \), \(G(C) \) is a filter, where

\[
G(C) = \{ X \in B(\bar{Q}) : (\exists V)(\bar{Q} \subseteq V \subseteq X \cup C) \},
\]

and \(V \) ranges over the clopen sets. If

\[
G = \{ G(C) : C \in \mathcal{E}_H \},
\]

then \(G \) is the isomorphic image under \(\Phi \) of \(H \), and \(G \) is a lattice with the standard operations \(\lor, \land \) on the filters of \(B(Q) \). To conclude the proof we show \(G \not\leq_T \emptyset^{(3)} \). The relation “\(P \in G(P) \)” is \(\Sigma^0_2 \) uniformly in \(C \), since “\(Q \subseteq V \)” is \(\Sigma^0_2 \), and “\(V \subseteq X \cup C \)” is \(\Pi^0_1 \), being equivalent to “\(\forall X \cup C = 2^\omega \)” (It is here where the
difference between the principal and nonprincipal end intervals becomes apparent, since the set in \(\mathbb{E} \) corresponding to \(G(C) \) is merely \(\mathcal{F}_1 \). It follows that the relation “\(G(P_c) = G(P_d) \)” is \(\Pi^0_1 \). Since \(\Phi \) is an isomorphism, \(G \) is a lattice with the usual operations on filters. To show that these operations are recursive in \(\Phi^{(3)} \), first note that \(G(P_c) \cap G(P_d) = G(P_c \cap P_d) \). For the supremum, we have
\[
G(P_c) \cup G(P_d) = \{X \cap Y : X \in G(P_c) \& Y \in G(P_d)\},
\]
and this equals \(G(P_e) \) for some \(e \). In fact, such an \(e \) can be obtained with oracle \(\Phi^{(3)} \), because \(e \) satisfies
\[
(\forall i)(P_i \in G(P_e) \iff (\exists a, b)(P_a \in G(P_i) \& P_b \in G(P_d) \& P_i = P_a \cap P_b)).
\]

\[\square\]

5. Some definable subsets of \(\mathcal{E}_k \)

In this section, we will demonstrate the definability in \(\mathcal{E}_k \) of various sets of \(\Pi^0_1 \) classes, including the finite classes and the minimal classes. Recall that the Cantor-Bendixson derivative \(D(P) \) of a closed set \(P \) contains exactly the limit points of \(P \). Then \(\{P : \text{card}(D^n(P)) \geq k\} \) is a \(\Sigma^0_{k+1} \) filter for each finite \(n \) and \(k \) by Theorem 45 of [3]. We will show that this family is in fact definable in \(\mathcal{E}_k \).

For a \(\Pi^0_1 \) class \(P \), let \(\mathcal{L}(P) \) be the initial segment \([0, P]\) in \(\mathcal{E}_k \). In general, \(\mathcal{L}(P) \) may not be a Boolean algebra. Hence, we also consider the subfamily \(\mathcal{C} \mathcal{L}(P) \) of relative clopen subclasses. That is, \(\mathcal{C} \mathcal{L}(P) = \{P \cap V : V \in \mathcal{Q}\} \). Then \(\mathcal{C} \mathcal{L}(P) \) is always a Boolean algebra and has a \(\Delta^0_2 \) representation using as indices Gödel numbers for clopen sets. Recall that \(P \) is thin if \(\mathcal{L}(P) \) is a Boolean algebra; the corresponding ideal \(I \) in \(\mathcal{Q} \) is said to be hh-simple in analogy to \(\mathcal{E} \). Then \(P \) is thin if and only if \(\mathcal{L}(P) = \mathcal{C} \mathcal{L}(P) \). It is shown in [4] that the set of indices for thin classes is a \(\Pi^0_1 \) set.

Recall that the derivative \(B^* \) of a boolean algebra \(B \) is \(B/U \), where \(U \) is the ideal generated by the atoms of \(B \); equivalently, the derivative is the quotient of \(B \) modulo the filter generated by the co-atoms. Note that \(B^* = \{0\} \) iff \(B \) is finite. We say \(P \) is minimal if \(\mathcal{L}(P)^* \) is the trivial Boolean algebra \(\{0, 1\} \) and \(P \) is quasi-minimal if \(\mathcal{L}^*(P) \) is finite; the corresponding ideal \(I \) in \(\mathcal{Q} \) is maximal (quasi-maximal).

Certainly, any family definable in \(\mathcal{L}(P) \) will have an arithmetical index set. As was done in [7] for \(\mathcal{E} \), we will obtain a partial converse here.

A closed set is nowhere dense if it does not include any nontrivial clopen set. Note that thin classes and countable classes are nowhere dense.

Theorem 5.1. Suppose the \(\Pi^0_1 \) class \(P \) is nowhere dense. Then for each odd \(k \geq 3 \), the class of \(\theta^k \) filters of \(\mathcal{C} \mathcal{L}(P) \) is uniformly definable in \(\mathcal{E}_k \), via a formula \(\varphi(X; P_1, \ldots, P_n, P) \) which does not depend on \(P \).

The proof of Theorem 5.1 is given below. We first show how to derive the definability of subsets of \(\mathcal{E}_k \) from this. If \(F \) is a filter of \(\mathcal{C} \mathcal{L}(P) \), let \(\mathcal{A}(F) \) be the filter of \(\mathcal{C} \mathcal{L}(P) \) generated by the co-atoms of \(\mathcal{C} \mathcal{L}(P)/F \), so that \(\mathcal{C} \mathcal{L}(P)/\mathcal{A}(F) \) is the derivative of \(\mathcal{C} \mathcal{L}(P)/F \). Let \(B^{(k)} \) be the \(k \)th derivative of \(B \). It follows from Theorem 4.7 of [1] that for any \(\Pi^0_1 \) class \(P \), \(\mathcal{C} \mathcal{L}(P)^{(k)} \) is effectively isomorphic to \(\mathcal{C} \mathcal{L}(D^k(P)) \).
Proposition 5.2. If F is a filter of $\mathcal{CL}(P)$ which is definable in (\mathcal{E}_Π, P), then so is $A(F)$. The formula defining $A(F)$ only depends on the one defining F, not on the particular choice of P.

Proof. Suppose that F is a Σ^0_k filter, $k \geq 3$. Then $A(F)$ is Σ^0_{k+2}. Using Theorem 5.1, we may define $A(F)$ as the least Σ^0_{k+2} filter of $\mathcal{CL}(P)$ which contains all the elements of F and all $B \subset P$ such that B/F is a co-atom in $\mathcal{CL}(P)/F$.

In the following theorem, the case $n = 1$ and $B = \{0\}$ gives a first-order definition of finiteness.

Theorem 5.3. Let $n > 0$ and let B be a finite Boolean algebra or $B = \{0\}$. Then

$$\{P : \mathcal{CL}(P)^{(n)} \cong B\}$$

is definable in \mathcal{E}_Π without parameters.

Proof. Let $F^P_0 = \{1\}$ and for each n, let $F^P_{n+1} = A(F_n)$. It follows from Proposition 5.2 that there is a formula φ_n (independent of P) which defines F^P_n in $\mathcal{CL}(P)$. Hence, we can express that the quotient algebra of $\mathcal{CL}(P)$ modulo F^P_n is isomorphic to B. \hfill \Box

Corollary 5.4. The following families of Π^0_1 classes are definable in \mathcal{E}_Π without parameters:

(a) For any fixed n and k, $\{P : \text{card}(D^n(P)) \leq k\}$.

(b) The minimal classes.

Proof. (a) This follows from Theorem 5.3 and the fact that $\mathcal{CL}(D^n(P))$ is isomorphic to $\mathcal{CL}(P)^{(n)}$.

(b) P is minimal if and only if, for all $Q \in \mathcal{L}(P)$, either Q is finite or $P - Q$ is finite. \hfill \Box

This corollary takes care of countable classes of finite rank, but we can also consider uncountable classes of finite rank. (Recall that the rank of a class P is the least α such that $D^{\alpha+1}(P) = D^\alpha(P)$.)

Proposition 5.5. For each ordinal α, the family of Π^0_1 classes of rank α is definable in \mathcal{E}_Π if and only if α is finite.

Proof. For infinite α, the family cannot be definable since $\{e : \text{card}(D^\alpha(P_e)) = \emptyset\}$ is Σ^0_{2n+1} complete and thus not arithmetical, by Theorem 45 of [4]. For finite α, P has rank α if and only if $F^P_{\alpha+1} = F^P_{\alpha}$, where F^P_{α} is defined as in the proof of Theorem 5.3. \hfill \Box

In the following we refer to Tarski's classification of the completions T of the theory of Boolean algebras, in the form presented in Chang and Keisler [7, Section 5.5.]. They assign invariants $m(B), n(B) \in \omega+1$ to Boolean algebras and prove that two Boolean algebras are elementarily equivalent iff they have the same invariants. Thus, if T is a completion of the theory of Boolean algebras, we can also write $m(T), n(T)$ for $m(B), n(B)$, where B is some model of T.

Theorem 5.6. For any completion T of the theory of Boolean algebras, except possibly the one with invariants $m(T) = \infty$ and $n(T) = 0$, the family of Π_0^1 classes such that $CL(P) \models T$ is definable in E_H without parameters.

Note that the theorem is nontrivial since some completions are not finitely axiomatizable.

Proof. To define the invariants for a Boolean algebra B, one introduces definable ideals I_k: let $I_0 = \{0\}$, and let I_{k+1} be the preimage in B of the ideal of B/I_k generated by the atomic and the atomless elements. Consider $B = CL(P)$. There are formulas $\psi(P)$ in the language of E_H expressing that B/I_k has n atoms, or, using Theorem 5.1 for ideals, there are infinitely many atoms (that is, the ideal generated by the atoms is nonprincipal). Thus, we can express that $CL(P)$ satisfies the required invariants.

Proof of Theorem 5.1. We use the Definability Lemma 2.6. Given a locally principal extension Q of a thin Π_0^1 class P and the effectively dense Σ_0^1 Boolean algebra $K = B(Q)/R_P(Q)$ as above, consider the Boolean homomorphism $\Phi : CL(P) \to K$ defined by

$$\Phi(P \cap V) = (Q \cup V)/R_P(Q).$$

We first show that this map is well defined. Suppose that $P \cap V = P$, then $P \cap V^c = \emptyset$, so that $Q \cap V^c$ is clopen by Lemma 2.3, and thus $Q \cup V = (Q \cap V^c) \cup V$ is also clopen; hence, $P \subset Q \cup V$.

Furthermore, note that with the canonical representations, Φ is Δ^0_3.

Claim 5.7. Suppose that for all clopen V, $P \subset Q \cup V$ implies that $P \subset V$. Then Φ is an embedding.

Proof. Suppose that $P \cap V$ is in the kernel of Φ. Then $P \subset Q \cup V^c$, so that $P \subset V^c$.

Next we show such a Q exists.

Claim 5.8. Suppose that P is nowhere dense. Then there exists a locally principal extension Q of P such that, for all clopen V, $P \subset Q \cup V$ implies that $P \subset V$.

Proof. First note that, if $P \not\subset V$, then $P \cup V$ is nonprincipal. To see this, suppose that $P \cup V = U$ is clopen, so that $P - V = U - V$ is a nonempty clopen subset of P. Since P is nowhere dense, $U - V = \emptyset$, so that $P \not\subset V$, contradiction.

Recall that $2^\omega - P = \bigcup_n U_n$, where the clopen sets U_n are disjoint. We will define Q to be $2^\omega - \bigcup_{n \in A} U_n$ for a certain c.e. set A. We build A by extending the construction in the proof of Lemma 2.4 above. Let P_e be the eth Π_0^1 class and express P_e as the intersection of a uniformly computable, decreasing sequence of clopen sets $P_{e,s}$. It suffices to meet the following requirements for each clopen V and each e:

$$R_{V,e} : (Q \cup V) \cap P_e = P \Rightarrow P \subset V.$$

Construction of A: In the beginning all requirements are declared unsatisfied. At stage s of the construction, we may select a candidate U_n for some requirement, and we may take action on some requirements, as follows.

1. If $R_{V,e}$ is the highest priority requirement without a candidate and $V^c \cap U_n \neq \emptyset$, then declare U_n to be its candidate.
2. For each unsatisfied requirement $R_{V,c}$ which has a candidate U_n, if now $U \cap P_{e,s} = \emptyset$, then put n into A and declare the requirement satisfied.

We observe that no U_n can be a candidate for more than one requirement.

Verification: Clearly, Q is a locally principal extension of P. Suppose by way of contradiction that the requirement $R = R_{V,e}$ is not met. Then $(Q \cup V) \cap P_e = \emptyset$ and $P \cup V$ is nonprincipal. By the first assumption, $(Q \cup V) \cap P_e = 2^\omega$ and $(Q \cup V) \cap P_e = \emptyset$. Then for each n, we have $U_n \subset Q \cup V \cup P_e$ and we have $U_n \cap (Q \cup V) \cap P_e = \emptyset$. By the second assumption, there are infinitely many n such that $V^c \cap U_n \neq \emptyset$. That is, suppose by way of contradiction that only finitely many of the U_n meet V^c, say $\{U_i : i \in F\}$ for some finite set F. Then it is easily seen that $P \cup V = V \cup (2^\omega - \bigcup_{i \in F} U_i)$. Thus, R eventually receives a candidate U_n. Now there are two cases.

Case I: First, suppose that $U_n \cap P_e = \emptyset$. Then for some s, $U_n \cap P_{e,s} = \emptyset$, so that $n \in A$ and $U_n \cap Q = \emptyset$ by the construction. But we chose n such that $U_n \cap V^c \neq \emptyset$, that is, $U_n \nsubseteq V$, which contradicts $U_n \subset Q \cup V \cup P_e$.

Case II: Suppose that $U_n \cap P_e \neq \emptyset$. Then by the construction $n \notin A$. Thus, $U_n \subset Q$, which contradicts $U_n \cap (Q \cup V) \cap P_e = \emptyset$. \qed

Now, given a nowhere dense Π^0_2 class P and odd $k \geq 3$, then $\varphi(X; P_1, \ldots, P_n, P)$ for Theorem 5.1 is obtained as follows. Suppose $P \subseteq Q$ is as in Claim 5.8. Since Φ is 1-1 and is Δ^0_k, if \mathcal{H} ranges through the k-acceptable filters of $B(Q)$, then $\Phi^{-1}(\mathcal{H}/_{\mathcal{R}_F(Q)})$ ranges through the Σ^0_k filters of $\mathcal{CL}(P)$. Let $\varphi(X; P_1, \ldots, P_n, P, Q)$ be
\[
\exists Q[P, Q \text{ as in Claim 5.8 } \& \forall V[X = P \cap V \& \psi(Q \cup V; P_1, \ldots, P_n, P, Q)]
\]
where $\psi(X; P_1, \ldots, P_n, P, Q)$ is the formula from the Definability Lemma 2.6 \qed

References

Department of Mathematics, University of Florida, Gainesville, Florida 32611

E-mail address: cenzer@math.ufl.edu

Department of Mathematics, The University of Chicago, 5734 S. University Ave., Chicago, Illinois 60637

E-mail address: nies@math.uchicago.edu

Current address: Department of Computer Science, University of Auckland, Private Bag 92019, Auckland 1020, New Zealand

E-mail address: andre@cs.auckland.ac.nz