Infimum Principle
HTML articles powered by AMS MathViewer
- by Władysław Kulpa and Andrzej Szymanski
- Proc. Amer. Math. Soc. 132 (2004), 203-210
- DOI: https://doi.org/10.1090/S0002-9939-03-06994-6
- Published electronically: May 28, 2003
- PDF | Request permission
Abstract:
We utilize the technique of dual sets to prove a theorem on the attainment of a simultaneous infimum by a compatible family of functions. Corollaries to the theorem include, among others, the von Neumann Minimax Principle and Nash’s Equilibrium Theorem.References
- K. Devlin, Mathematician Awarded Nobel Prize, FOCUS 14 (6) (1994), 1, 3.
- D. Gale, John Nash and the Nobel Prize, FOCUS 15 (2) (1995), 4.
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- James Dugundji and Andrzej Granas, Fixed point theory. I, Monografie Matematyczne [Mathematical Monographs], vol. 61, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1982. MR 660439
- Władysław Kulpa, Convexity and the Brouwer fixed point theorem, Proceedings of the 12th Summer Conference on General Topology and its Applications (North Bay, ON, 1997), 1997, pp. 211–235. MR 1718875
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Hukukane Nikaidô, Convex structures and economic theory, Mathematics in Science and Engineering, Vol. 51, Academic Press, New York-London, 1968. MR 0277233
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- H. Reitberger, Vietoris-Beglesches Abbildungstheorem, Vietoris-Lefschetz-Eilenberg-Montgomery-Beglescher Fixpunktsatz und Wirtschaftsnobelpreise, Jahresber. Deutsch. Math.-Verein. 103 (2001), no. 3, 67–73 (German). MR 1873323
- J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, John Wiley & Sons, New York, 1964.
- N. N. Vorob′ev, Game theory, Applications of Mathematics, Vol. 7, Springer-Verlag, New York-Berlin, 1977. Lectures for economists and systems scientists; Translated and supplemented by S. Kotz. MR 0452473
Bibliographic Information
- Władysław Kulpa
- Affiliation: Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland
- Email: kulpa@ux2.math.us.edu.pl
- Andrzej Szymanski
- Affiliation: Department of Mathematics, Slippery Rock University, Slippery Rock, Pennsylvania 16057
- Email: andrzej.szymanski@sru.edu
- Received by editor(s): November 14, 2001
- Received by editor(s) in revised form: August 14, 2002
- Published electronically: May 28, 2003
- Communicated by: Alan Dow
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 203-210
- MSC (1991): Primary 52A07, 54H25, 90A56; Secondary 90D06
- DOI: https://doi.org/10.1090/S0002-9939-03-06994-6
- MathSciNet review: 2021263