## Infimum Principle

HTML articles powered by AMS MathViewer

- by Władysław Kulpa and Andrzej Szymanski PDF
- Proc. Amer. Math. Soc.
**132**(2004), 203-210 Request permission

## Abstract:

We utilize the technique of dual sets to prove a theorem on the attainment of a simultaneous infimum by a compatible family of functions. Corollaries to the theorem include, among others, the von Neumann Minimax Principle and Nash’s Equilibrium Theorem.## References

- K. Devlin,
*Mathematician Awarded Nobel Prize*, FOCUS 14 (6) (1994), 1, 3. - D. Gale,
*John Nash and the Nobel Prize*, FOCUS 15 (2) (1995), 4. - Saunders MacLane,
*Steinitz field towers for modular fields*, Trans. Amer. Math. Soc.**46**(1939), 23–45. MR**17**, DOI 10.1090/S0002-9947-1939-0000017-3 - James Dugundji and Andrzej Granas,
*Fixed point theory. I*, Monografie Matematyczne [Mathematical Monographs], vol. 61, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1982. MR**660439** - Władysław Kulpa,
*Convexity and the Brouwer fixed point theorem*, Proceedings of the 12th Summer Conference on General Topology and its Applications (North Bay, ON, 1997), 1997, pp. 211–235. MR**1718875** - Morgan Ward and R. P. Dilworth,
*The lattice theory of ova*, Ann. of Math. (2)**40**(1939), 600–608. MR**11**, DOI 10.2307/1968944 - C. J. Everett Jr.,
*Annihilator ideals and representation iteration for abstract rings*, Duke Math. J.**5**(1939), 623–627. MR**13** - Hukukane Nikaidô,
*Convex structures and economic theory*, Mathematics in Science and Engineering, Vol. 51, Academic Press, New York-London, 1968. MR**0277233** - Cahit Arf,
*Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper*, J. Reine Angew. Math.**181**(1939), 1–44 (German). MR**18**, DOI 10.1515/crll.1940.181.1 - H. Reitberger,
*Vietoris-Beglesches Abbildungstheorem, Vietoris-Lefschetz-Eilenberg-Montgomery-Beglescher Fixpunktsatz und Wirtschaftsnobelpreise*, Jahresber. Deutsch. Math.-Verein.**103**(2001), no. 3, 67–73 (German). MR**1873323** - J. von Neumann and O. Morgenstern,
*Theory of Games and Economic Behavior*, John Wiley & Sons, New York, 1964. - N. N. Vorob′ev,
*Game theory*, Applications of Mathematics, Vol. 7, Springer-Verlag, New York-Berlin, 1977. Lectures for economists and systems scientists; Translated and supplemented by S. Kotz. MR**0452473**

## Additional Information

**Władysław Kulpa**- Affiliation: Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland
- Email: kulpa@ux2.math.us.edu.pl
**Andrzej Szymanski**- Affiliation: Department of Mathematics, Slippery Rock University, Slippery Rock, Pennsylvania 16057
- Email: andrzej.szymanski@sru.edu
- Received by editor(s): November 14, 2001
- Received by editor(s) in revised form: August 14, 2002
- Published electronically: May 28, 2003
- Communicated by: Alan Dow
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**132**(2004), 203-210 - MSC (1991): Primary 52A07, 54H25, 90A56; Secondary 90D06
- DOI: https://doi.org/10.1090/S0002-9939-03-06994-6
- MathSciNet review: 2021263