An optimal Poincaré inequality in $L^1$ for convex domains
HTML articles powered by AMS MathViewer
- by Gabriel Acosta and Ricardo G. Durán
- Proc. Amer. Math. Soc. 132 (2004), 195-202
- DOI: https://doi.org/10.1090/S0002-9939-03-07004-7
- Published electronically: April 24, 2003
- PDF | Request permission
Abstract:
For convex domains $\Omega \subset \mathbb {R}^n$ with diameter $d$ we prove \[ \|u\|_{L^1(\omega )} \le \frac {d}{2} \|\nabla u\|_{L^1(\omega )} \] for any $u$ with zero mean value on $\omega$. We also show that the constant $1/2$ in this inequality is optimal.References
- Shmuel Agmon, Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. MR 0178246
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal. 5 (1960), 286–292 (1960). MR 117419, DOI 10.1007/BF00252910
- Rüdiger Verfürth, A note on polynomial approximation in Sobolev spaces, M2AN Math. Model. Numer. Anal. 33 (1999), no. 4, 715–719 (English, with English and French summaries). MR 1726481, DOI 10.1051/m2an:1999159
- R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355–405. MR 1898210, DOI 10.1090/S0273-0979-02-00941-2
Bibliographic Information
- Gabriel Acosta
- Affiliation: Instituto de Ciencias, Universidad Nacional de General Sarmiento, J. M. Gutierrez 1150, Los Polvorines, B1613GSX Provincia de Buenos Aires, Argentina
- Email: gacosta@ungs.edu.ar
- Ricardo G. Durán
- Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
- ORCID: 0000-0003-1349-3708
- Email: rduran@dm.uba.ar
- Received by editor(s): May 10, 2002
- Received by editor(s) in revised form: September 10, 2002
- Published electronically: April 24, 2003
- Additional Notes: This work was supported by Universidad de Buenos Aires under grant TX048, ANPCyT under grant PICT 03-05009 and by CONICET under grant PIP 0660/98. The second author is a member of CONICET, Argentina
- Communicated by: Andreas Seeger
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 195-202
- MSC (2000): Primary 26D10
- DOI: https://doi.org/10.1090/S0002-9939-03-07004-7
- MathSciNet review: 2021262