Monoid of self-equivalences and free loop spaces
HTML articles powered by AMS MathViewer
- by Yves Félix and Jean-Claude Thomas
- Proc. Amer. Math. Soc. 132 (2004), 305-312
- DOI: https://doi.org/10.1090/S0002-9939-03-07018-7
- Published electronically: May 28, 2003
- PDF | Request permission
Abstract:
Let $M$ be a simply-connected closed oriented $N$-dimensional manifold. We prove that for any field of coefficients $l\!k$ there exists a natural homomorphism of commutative graded algebras $\Gamma : H_* (\Omega \mbox {aut}_1 M) \to \mathbb H_{*}(M^{S^1})$ where $\mathbb H_*(M^{S^1})= H_{* +N}(M^{S^1})$ is the loop algebra defined by Chas and Sullivan. As usual $\mbox {aut}_1 X$ denotes the monoid of self-equivalences homotopic to the identity, and $\Omega X$ the space of based loops. When $l\!k$ is of characteristic zero, $\Gamma$ yields isomorphisms $H^{n+N}_{(1)}(M^{S^1}) \stackrel {\cong }{\to } (\pi _n(\Omega \mbox {aut}_1 M) \otimes l\!k)^\vee$ where $\bigoplus _{l=1}^\infty H^n_{(l)}(M^{S^1})$ denotes the Hodge decomposition on $H^* (M ^{S^1})$.References
- M. Chas and D. Sullivan, String topology, preprint math GT/9911159.
- R. Cohen and J. Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002) 773–798.
- R. Cohen, J. D.S. Jones and J. Yan, The loop homology of spheres and projective spaces, preprint, February 2002.
- Y. Félix and J. C. Thomas, The monoid of self-homotopy equivalences of some homogeneous spaces, Exposition. Math. 12 (1994), no. 4, 305–322. MR 1297839
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847, DOI 10.1007/978-1-4613-0105-9
- Y. Félix, J.-C. Thomas and M. Vigué-Poirrier, Structure of the loop homology of a compact manifold, preprint, March 2002.
- J.-B. Gatsinzi, The homotopy Lie algebra of classifying spaces, J. Pure Appl. Algebra 120 (1997), no. 3, 281–289. MR 1468920, DOI 10.1016/S0022-4049(96)00037-0
- Murray Gerstenhaber and S. D. Schack, A Hodge-type decomposition for commutative algebra cohomology, J. Pure Appl. Algebra 48 (1987), no. 3, 229–247. MR 917209, DOI 10.1016/0022-4049(87)90112-5
- André Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982), no. 2, 609–620. MR 667163, DOI 10.1090/S0002-9947-1982-0667163-8
- John D. S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), no. 2, 403–423. MR 870737, DOI 10.1007/BF01389424
- John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264. MR 174052, DOI 10.2307/1970615
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078
- Micheline Vigué-Poirrier and Dennis Sullivan, The homology theory of the closed geodesic problem, J. Differential Geometry 11 (1976), no. 4, 633–644. MR 455028
- Micheline Vigué-Poirrier, Décompositions de l’homologie cyclique des algèbres différentielles graduées commutatives, $K$-Theory 4 (1991), no. 5, 399–410 (French, with English summary). MR 1116926, DOI 10.1007/BF00533212
- Micheline Vigué-Poirrier, Homotopie rationnelle et croissance du nombre de géodésiques fermées, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 3, 413–431 (French). MR 777376
Bibliographic Information
- Yves Félix
- Affiliation: Département de Mathématique, Université Catholique de Louvain, 2, Chemin du Cyclotron, 1348 Louvain-La-Neuve, Belgium
- Email: felix@math.ucl.ac.be
- Jean-Claude Thomas
- Affiliation: Faculté des Sciences, Université d’Angers, 2, Boulevard Lavoisier, 49045 Angers, France
- Email: thomas@univ-angers.fr
- Received by editor(s): May 5, 2002
- Received by editor(s) in revised form: August 30, 2002
- Published electronically: May 28, 2003
- Communicated by: Paul Goerss
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 305-312
- MSC (2000): Primary 55P35, 55P62, 55P10
- DOI: https://doi.org/10.1090/S0002-9939-03-07018-7
- MathSciNet review: 2021275