THE FORM SUM AND THE FRIEDRICHS EXTENSION
OF SCHÖDINGER-TYPE OPERATORS
ON RIEMANNIAN MANIFOLDS

OGNJEN MILATOVIC

(Communicated by David S. Tartakoff)

ABSTRACT. We consider $H_V = \Delta_M + V$, where (M, g) is a Riemannian manifold (not necessarily complete), and Δ_M is the scalar Laplacian on M. We assume that $V = V_0 + V_1$, where $V_0 \in L^2_{\text{loc}}(M)$ and $-C \leq V_1 \in L^1_{\text{loc}}(M)$ (C is a constant) are real-valued, and $\Delta_M + V_0$ is semibounded below on $C^\infty_c(M)$. Let T_0 be the Friedrichs extension of $(\Delta_M + V_0)|_{C^\infty_c(M)}$. We prove that the form sum $T_0 + V_1$ coincides with the self-adjoint operator T_F associated to the closure of the restriction to $C^\infty_c(M) \times C^\infty_c(M)$ of the sum of two closed quadratic forms of T_0 and V_1. This is an extension of a result of Cycon. The proof adopts the scheme of Cycon, but requires the use of a more general version of Kato's inequality for operators on Riemannian manifolds.

1. Introduction and the main result

Let (M, g) be a Riemannian manifold (i.e. M is a C^∞-manifold, (g_{jk}) is a Riemannian metric on M), $\dim M = n$. We will assume that M is connected. We will also assume that we are given a positive smooth measure $d\mu$, i.e. in any local coordinates x^1, x^2, \ldots, x^n there exists a strictly positive C^1-density $\rho(x)$ such that $d\mu = \rho(x)dx^1dx^2\ldots dx^n$. We do not assume that (M, g) is complete.

We will consider a Schrödinger-type operator of the form

$$H_V = \Delta_M + V.$$

Here $\Delta_M := d^*d$, where $d: C^\infty(M) \to \Omega^1(M)$, and $V \in L^1_{\text{loc}}(M)$ is real-valued.

1.1. Maximal operator. We define the maximal operator $H_{V,\text{max}}$ associated to H_V as an operator in $L^2(M)$ given by $H_{V,\text{max}}u = H_Vu$ with domain

$$\text{Dom}(H_{V,\text{max}}) = \{u \in L^2(M) : Vu \in L^1_{\text{loc}}(M), H_Vu \in L^2(M)\}.$$

Here $\Delta_M u$ in $H_V u = \Delta_M u + Vu$ is understood in the distributional sense.

We make the following assumptions on V.

Assumption A. Assume $V = V_0 + V_1$, where

(i) $V_0 \in L^2_{\text{loc}}(M)$ and $\Delta_M + V_0$ is semibounded below on $C^\infty_c(M)$.

(ii) $V_1 \in L^1_{\text{loc}}(M)$ and $V_1 \geq -C$, where $C > 0$ is a constant.

Received by the editors August 20, 2002.

2000 Mathematics Subject Classification. Primary 35P05, 58G25; Secondary 47B25, 81Q10.
1.2. **Quadratic forms.** For any self-adjoint operator T: $\text{Dom}(T) \subset L^2(M) \to L^2(M)$ such that $T \geq -\alpha$, we will denote by $Q(T)$ the domain of the quadratic form t associated to T. By Theorem 2.1 in [3], t is a closed semibounded below form, i.e. $Q(T)$ is a Hilbert space with the inner product

\[(u, v)_t = t(u, v) + (1 + \alpha)(u, v)_{L^2(M)},\]

where (\cdot, \cdot) is the sesquilinear form obtained by polarization of t.

1.3. **Form sum.** By (i) of Assumption A, $\Delta_M + V_0$ is symmetric and semibounded below on $C_0^\infty(M)$, so we can associate to it a semibounded below self-adjoint operator T_0 (Friedrichs extension, cf. Theorem 14.1 in [3]).

We will denote by $T_0 + V_1$ the form sum of T_0 and V_1. By Theorem 4.1 in [3], this is the self-adjoint operator associated to the semibounded below closed quadratic form t_q given by the sum of two semibounded below closed quadratic forms corresponding to T_0 and V_1. By the same theorem, the following is true: $Q(T_0 + V_1) = Q(T_0) \cap Q(V_1)$. Clearly, $T_0 + V_1$ is a self-adjoint restriction of $H_{V_{\text{max}}}$.

1.4. **Operator T_F.** Denote by t_{min} the restriction of t_q to $C_0^\infty(M) \times C_0^\infty(M)$. Denote by T_F the self-adjoint operator associated to the closure of t_{min} in the sense of the norm in $Q(T_0 + V_1)$. Clearly, T_F is a self-adjoint restriction of $H_{V_{\text{max}}}$.

We will give a sufficient condition for $T_F = T_0 + V_1$.

Theorem 1.5. Suppose that Assumption A holds. Then $T_F = T_0 + V_1$.

Remark 1.6. Theorem 1.5 was proven by Cycon [2] in the case of the operator $-\Delta + V$ in an open set $M \subset \mathbb{R}^n$, where Δ is the standard Laplacian on \mathbb{R}^n with the standard metric. In the case $V_0 = 0$ and $M = \mathbb{R}^n$ with standard metric, Theorem 1.5 was proven in Simon [13].

2. **Operators with a positive form core**

Definition 2.1. Let $T: C_0^\infty(M) \subset L^2(M) \to L^2(M)$ be a symmetric semibounded below operator. Let T_F denote its Friedrichs extension and $Q(T_F)^+$ the set of a.e. positive elements of $Q(T_F)$. We say that T_F has a positive form core if for every $u \in Q(T_F)^+$ there exists a sequence $u_k \in C_0^\infty(M)^+$ such that

$$\|u_k - u\|_t \to 0 \quad \text{as} \quad k \to \infty,$$

where $\|\cdot\|_t$ is the norm associated to the closure of quadratic form $t(v, w) := (Tv, w)$ $(v, w \in C_0^\infty(M))$ via (1.2).

The main result of this section is

Theorem 2.2. Suppose that $\Delta_M + V_0$ is as in (i) of Assumption A. Let T_0 be the Friedrichs extension of $(\Delta_M + V_0)|_{C_0^\infty(M)}$. Then T_0 has a positive form core.

Remark 2.3. In the case of the operator $-\Delta + V_0$ in an open set $M \subset \mathbb{R}^n$, Theorem 2.2 was proven in [2] Th. 1.

We will first prove the following special case of Theorem 2.2

Proposition 2.4. Suppose that $-C \leq V_0 \in L^2_{\text{loc}}(M)$, where $C > 0$ is a constant. Let T_0 be the Friedrichs extension of $(\Delta_M + V_0)|_{C_0^\infty(M)}$. Then T_0 has a positive form core.
We begin with a few preliminary lemmas.

In what follows \(T_b \) is as in the hypothesis of Proposition 2.4, and \(T_b \) is the closed quadratic form associated with \(T_b \). Without loss of generality, we may and we will assume that \(V_0 \geq 0 \) so that \(T_b \) is a positive self-adjoint operator.

We will denote \(W^{1,2}(M) := \{ u \in L^2(M) : du \in L^2(T^*M) \} \). By \(W^{1,2}_0(M) \) we will denote the closure of \(\mathcal{C}_c^\infty(M) \) in the norm \(\| u \|_{W^{1,2}}^2 := \| du \|^2 + \| u \|^2 \), where \(\| \cdot \| \) is the \(L^2 \) norm. By \(Q(V_0) \) we will denote the set \(\{ u \in L^2(M) : V_0^{1/2}u \in L^2(M) \} \). Clearly, \(Q(V_0) \) is the closure of \(\mathcal{C}_c^\infty(M) \) in the norm
\[
\| u \|^2_{V_0} := \| V_0^{1/2}u \|^2 + \| u \|^2,
\]
where \(\| \cdot \| \) is the norm in \(L^2(M) \).

In the proofs of the following three lemmas, we will use the arguments from the proof of Lemma 1 in [5].

Lemma 2.5. \(Q(T_b) = W^{1,2}_0(M) \cap Q(V_0) \).

Proof. Denote by \(\mathcal{H}_1 := W^{1,2}_0(M) \cap Q(V_0) \). Consider a sesquilinear form \(S : \mathcal{H}_1 \times \mathcal{H}_1 \rightarrow \mathbb{C} \) given by
\[
S(u,v) := (du, dv) + (V_0^{1/2}u, V_0^{1/2}v),
\]
where \((\cdot, \cdot)\) is the inner product in \(L^2 \).

This sesquilinear form is closed, so the pre-Hilbert space \(\mathcal{H}_1 \) is complete in the norm
\[
(u,v)_{V_0} := (du, dv) + (V_0^{1/2}u, V_0^{1/2}v) + (u,v).
\]
By definition of \(W^{1,2}_0(M) \) and \(Q(V_0) \), it follows that \(\mathcal{H}_1 \) is the closure of \(\mathcal{C}_c^\infty(M) \) in the norm \(\| \cdot \|_{V_0} \) corresponding to (2.2).

For all \(u,v \in \mathcal{C}_c^\infty(M) \), \((u,v)_{V_0} = (u,v) + (T_b u,v) \). By Theorem 14.1 in [3], \(Q(T_b) \) is the closure of \(\mathcal{C}_c^\infty(M) \) in the norm \(\| \cdot \|_{V_0} \) corresponding to (2.2), so \(Q(T_b) = W^{1,2}_0(M) \cap Q(V_0) \). \(\square \)

Lemma 2.6. Assume that \(u \in \mathcal{C}_c^\infty(M) \). Then there exists a sequence \(\phi_k \in \mathcal{C}_c^\infty(M)^+ \) such that \(\| \phi_k - |u| \|_{V_0} \rightarrow 0 \) as \(k \rightarrow \infty \), where \(\| \cdot \|_{V_0} \) is the norm corresponding to (2.2).

Proof. Let \(u \in \mathcal{C}_c^\infty(M) \). Then \(|u| \in W^{1,2}_{\text{comp}}(M) \). Using a partition of unity we may assume that \(u \) is supported in a coordinate neighborhood. Let \(|u|^{\rho} = J^{\rho}|u| \), where \(J^{\rho} \) is the Friedrichs mollifying operator; cf. Sect. 5.11 in [1]. Then \(|u|^{\rho} \in \mathcal{C}_c^\infty(M) \).

It is well-known that \(|u|^{\rho} \rightarrow |u| \) as \(\rho \rightarrow 0+ \) both in the space \(W^{1,2}_{\text{comp}}(M) \) and in the space \(L^2_{\text{comp}}(M) \). Also, since \(|u| \) is continuous compactly supported on \(M \) and \(V_0 \in L^2_{\text{loc}}(M) \), we have
\[
\int V_0(|u|^{\rho})^2 d\mu \rightarrow \int V_0|u|^2 d\mu \quad \text{as} \; \rho \rightarrow 0+.
\]
Therefore,
\[
|||u|^{\rho} - |u|||_{V_0} \rightarrow 0 \quad \text{as} \; \rho \rightarrow 0+,
\]
where \(||| \cdot |||_{V_0} \) is the norm corresponding to (2.2). \(\square \)

Lemma 2.7. Suppose that \(u \in Q(T_b) \). Then \(|u| \in Q(T_b) \).
Proof. Let \(u \in Q(T_b) \). By Lemma 2.9, we get \(u \in W_{0}^{1,2}(M) \cap Q(V_0) \). Since \(u \in W_{0}^{1,2}(M) \), Lemma 7.6 from [4] gives \(|u| \in W_{0}^{1,2}(M) \). From \(u \in Q(V_0) \), we immediately get \(|u| \in Q(V_0) \). Therefore, \(|u| \in W_{0}^{1,2}(M) \cap Q(V_0) \), so by Lemma 2.5 we obtain \(|u| \in Q(T_b) \).

2.8. Proof of Proposition 2.4. We will follow the proof of Lemma 2 in [2]. Suppose that \(u \in Q(T_b)^{+} \). By Lemma 5.6 there exists a sequence \(\phi_j \in C_{0}^{c}(M) \) such that

\[
\|\phi_j - u\|_{tb} \to 0 \quad \text{as } j \to \infty, \tag{2.5}
\]

where \(\|\cdot\|_{tb} \) is the norm corresponding to \((2.2) \).

In what follows, we will denote \((\text{sign } w)(x) := \frac{w(x)}{|w(x)|} \) when \(w(x) \neq 0 \), and 0 otherwise.

We have

\[
(\|\phi_j - u\|_{tb})^2 = \|\phi_j - u\|^2 + |d\phi_j| - du|^2 + \|V_{0}^{1/2}(|\phi_j)| - u||^2 \tag{2.6}
\]

\[
\leq \|\phi_j - u\|^2 + |d\phi_j| - du|^2 + \|V_{0}^{1/2}(\phi_j - u)||^2 \tag{2.6}
\]

\[
= \|\phi_j - u\|^2 + \|\text{Re}(\text{sign } \phi_j) d\phi_j - du||^2 + \|V_{0}^{1/2}(\phi_j - u)||^2, \tag{2.6}
\]

where \(\|\cdot\| \) denotes the norm \(L^2 \).

From (2.6) we obtain

\[
(\|\phi_j - u\|_{tb})^2 \leq \|\phi_j - u\|^2 + \|d\phi_j - du\|^2 + \|\text{sign } \phi_j - 1||^2 du||^2 \tag{2.7}
\]

\[
+ \|V_{0}^{1/2}(\phi_j - u)||^2 \leq \|\phi_j - u\|^2 + |d\phi_j - du|^2 + \|\text{sign } \phi_j - 1||^2 du||^2 + \|V_{0}^{1/2}(\phi_j - u)||^2, \tag{2.7}
\]

where \(\|\cdot\| \) denotes the norm in \(L^2 \).

By (2.5), the first, second and fourth term on the right-hand side of (2.7) go to 0 as \(j \to \infty \).

It remains to show that

\[
((\text{sign } \phi_j - 1)du) \to 0 \quad \text{as } j \to \infty. \tag{2.8}
\]

By \(\phi_j \to u \) in \(L^2(M) \), a lemma of Riesz shows that there exists a subsequence \(\phi_{jk} \) such that \(\phi_{jk} \to u \) a.e. \(du \), as \(k \to \infty \). By Lemma 7.7 from [4], it follows that \(du = 0 \) almost everywhere on \(\{x \in M : u(x) = 0\} \). Hence, as \(k \to \infty \), sign \(\phi_{jk} \to 1 \) a.e. on \(M \). Since \(du \in L^2(T^*M) \), dominated convergence theorem immediately implies (2.8) (after passing to the chosen subsequence \(\phi_{jk} \)).

This shows that

\[
\|\phi_{jk} - u\|_{tb} \to 0 \quad \text{as } k \to \infty. \tag{2.9}
\]

By (2.5) and Lemma 2.6 there exists a sequence \(\psi_l \in C_{0}^{c}(M)^{+} \) such that \(\|\psi_l - u\|_{tb} \to 0 \) as \(l \to \infty \). By Definition 2.1 it follows that \(T_b \) has a positive form core.

In what follows, we will use a version of Kato’s inequality. For the proof of this inequality in general setting, cf. Theorem 5.6 in [1].

Theorem 2.9. Let \(E \) be a Hermitian vector bundle on \(M \), and let \(\nabla : C_{0}^{c}(E) \to C_{0}^{c}(T^*M \otimes E) \) be a Hermitian connection on \(E \). Let \(\nabla^* : C_{0}^{c}(T^*M \otimes E) \to C_{0}^{c}(E) \)
be formal adjoint of ∇ with respect to the usual inner product on $L^2(E)$. Assume that $u \in L^1_{loc}(E)$ and $\nabla^* \nabla u \in L^1_{loc}(E)$. Then
\begin{equation}
\Delta_M |u| \leq \text{Re}\langle \nabla^* \nabla u, \text{sign } u \rangle,
\end{equation}
where
\[
\text{sign } u(x) = \begin{cases}
\frac{u(x)}{|u(x)|} & \text{if } u(x) \neq 0, \\
0 & \text{otherwise.}
\end{cases}
\]

Definition 2.10. Let (X, μ) be a measure space. A bounded linear operator $A: L^2(X, \mu) \to L^2(X, \mu)$ is said to be positivity preserving if for every $0 \leq u \in L^2(X, \mu)$ we have $Au \geq 0$.

We will also use the following abstract theorem due to Simon; cf. Theorem 2.1 in [11].

Theorem 2.11 (Simon [11]). Suppose that (X, μ) is a measure space. Suppose that H is a positive self-adjoint operator in $L^2(X, \mu)$. Then $(H + 1)^{-1}$ is positivity preserving if and only if the following two conditions are satisfied:

(i) For every $u \in Q(H)$, we have $|u| \in Q(H)$.

(ii) For every $u \in \text{Dom}(H)$ and $0 \leq v \in Q(H)$, the following is true:

\[
\text{Re}[h(|u|, v)] \leq \text{Re}((\text{sign } u)v, Hu),
\]
where h is the quadratic form associated to H, and $(\text{sign } u)(x) = \frac{u(x)}{|u|}$ whenever $u(x) \neq 0$, and 0 otherwise.

The following lemma extends Lemma 1 from [5] to the case of Riemannian manifolds.

Lemma 2.12. The operator $(T_b + 1)^{-1}$ is positivity preserving.

Proof. Let t_b be the quadratic form associated to T_b. By Theorem 2.11, it suffices to check the following conditions:

(i) For every $u \in Q(T_b)$, we have $|u| \in Q(T_b)$ and

(ii) For every $u \in \text{Dom}(T_b)$ and $0 \leq v \in Q(T_b)$, the following is true:

\[
\text{Re}[t_b(|u|, v)] \leq \text{Re}((\text{sign } u)v, T_b u).
\]

Condition (i) follows immediately by Lemma 2.7.

We now prove that condition (ii) holds. Let $u \in \text{Dom}(T_b)$. Then $(\Delta_M + V_0)u \in L^2(M)$ and hence $\Delta_M u \in L^1_{loc}(M)$.

For $u \in \text{Dom}(T_b)$ and $0 \leq \phi \in C^\infty_c(M)$ we have

\[
\text{Re}[t_b(|u|, \phi)] = \text{Re}(|u|, (\Delta_M + V_0)\phi) = (|u|, \Delta_M \phi) + (|u|, V_0 \phi)
\]
\[
= (\Delta_M |u|, \phi) + (V_0 |u|, \phi)
\]
\[
\leq \text{Re}((\text{sign } u)\Delta_M u, \phi) + ((\text{sign } \bar{u})V_0 u, \phi)
\]
\[
= \text{Re}((\text{sign } u)T_b u, \phi) = \text{Re}((\text{sign } u)\phi, T_b^2 u).
\]

Here we used integration by parts and the special case of Kato inequality (2.10) for Δ_M.

Let $0 \leq v \in Q(T_b)$. By Proposition 2.13, there exists a sequence $\phi_j \in C^\infty_c(M)^+$ such that $\|\phi_j - v\|_{t_b} \to 0$ as $j \to \infty$, where $\| \cdot \|_{t_b}$ is the norm corresponding to (2.2).
From (2.11), we obtain
\[
\Re(t_b(|u|, v)) = \lim_{j \to \infty} \Re(t_b(|u|, \phi_j)) \leq \lim_{j \to \infty} \Re((\text{sign } u)\phi_j, T_b u) = \Re((\text{sign } u)v, T_b u).
\]
This proves condition (ii) and the lemma.

In what follows, \(T_0 \) is as in the hypothesis of Theorem 2.2. Without loss of generality, we may and we will assume that \(T_0 \) is a positive self-adjoint operator.

We will also use the notation \(Z_+: = \{1, 2, 3, \ldots\} \).

Proposition 2.13. \((T_0 + 1)^{-1}\) is positivity preserving.

Proof. We will adopt the arguments from the proof of Lemma 2 in [5] to our setting.

For every \(k \in Z_+ \) and \(x \in M \), define
\[
Q_k(x) = \begin{cases} V_0(x) & \text{if } V_0(x) \geq -k, \\ -k & \text{if } V_0(x) < -k. \end{cases}
\]

Let \(T_k \) be the Friedrichs extension of \((\Delta_M + Q_k)C^\infty_c(M)\). Then for all \(k \in Z_+ \) and \(u \in C^\infty_c(M) \), we have
\[
(u, T_k u) \geq (u, T_0 u) \geq 0,
\]
where \((\cdot, \cdot)\) is the inner product in \(L^2(M) \).

From (2.12) it follows that
\[
T_0 \leq T_k \quad \text{for all } k \in Z_+,
\]
and for all \(u \in Q(T_k) \), \(t_0(u, u) \leq t_k(u, u) \), where \(t_0 \) and \(t_k \) are the quadratic forms associated to \(T_0 \) and \(T_k \), respectively.

Furthermore, for all \(u \in C^\infty_c(M) \), the following is true:
\[
(u, T_k u) \to (u, T_0 u) \quad \text{as } k \to \infty.
\]

Clearly, \(C^\infty_c(M) \subset Q(T_k) \) for all \(k \in Z_+ \). By definition of Friedrichs extension, it follows that \(C^\infty_c(M) \) is dense in \(Q(T_0) \) (in the norm of \(Q(T_0) \)).

This, (2.13) and (2.14) show that the hypotheses of abstract Theorem 7.9 from [3] are satisfied.

Therefore, as \(k \to \infty \), \(T_k \to T_0 \) in the strong resolvent sense.

By Lemma 2.12, \((T_k + 1)^{-1}\) is positivity preserving for all \(k \in Z_+ \). Therefore, \((T_0 + 1)^{-1}\) is also positivity preserving.

Corollary 2.14. Assume that \(u \in Q(T_0) \). Then \(|u| \in Q(T_0)\).

Proof. \(T_0 \) is a positive self-adjoint operator in \(L^2(M) \). By Proposition 2.13, the operator \((T_0 + 1)^{-1}\) is positivity preserving. Now the corollary follows immediately from Theorem 2.12. \(\square \)

2.15. **Truncation operators corresponding to** \(T_0 \). Let \(T_0 \) be as in the hypothesis of Theorem 2.2.

Define \(V_0^+ := \max\{V_0, 0\} \), \(V_0^- := \max\{-V_0, 0\} \), and for each \(k \in Z_+ \), let \(V_k^0 := \min\{k, V_0^-\} \).

Denote by \(T_+ \) and \(T_k \) the Friedrichs extension of \((\Delta_M + V_0^+)|_{C^\infty_c(M)}\) and \((\Delta_M + V_k^+ - V_0^-)|_{C^\infty_c(M)}\), respectively.

Let \(t_0, t_+ \) and \(t_k \) \((k \in Z_+) \) be the quadratic forms associated to \(T_0, T_+ \) and \(T_k \), respectively.
The following lemma is analogous to Lemma 3 in [2].

Lemma 2.16. With the notations of Section 2.15,

(i) $T_k \to T_0$ in the strong resolvent sense as $k \to \infty$.

(ii) $Q(T_+) \subset Q(T_0)$.

Proof. For all $k \in \mathbb{Z}_+$, we clearly have $T_0 \leq T_k$. Also, $C_c^\infty(M) \subset Q(T_k)$ for all $k \in \mathbb{Z}_+$. By definition of T_0 it follows that $C_c^\infty(M)$ is dense in $Q(T_0)$ (in the norm of $Q(T_0)$).

Clearly, for all $w \in C_c^\infty(M)$,

$$(w, T_k w) \to (w, T_0 w) \quad \text{as } k \to \infty.$$

We now apply Theorem 7.9 in [3] to conclude the proof of (i).

Property (ii) follows immediately since $T_+ \geq T_0$. ∎

2.17. **Proof of Theorem 2.2.** We will adopt the arguments from the proof of Theorem 1 in [2].

By the proof of Lemma 2.16 it follows that

$$Q(T_+) \subset Q(T_k) \subset Q(T_0) \quad (2.15)$$

and

$$\| \cdot \|_{t_0} \leq \| \cdot \|_{t_k} \leq \| \cdot \|_{t_+}, \quad (2.16)$$

where $\| \cdot \|_{t_0}$, $\| \cdot \|_{t_k}$ and $\| \cdot \|_{t_+}$ are the norms associated to t_0, t_k and t_+, respectively; cf. (1.2).

In fact, $Q(T_k) = Q(T_+)$ since the norms $\| \cdot \|_{t_k}$ and $\| \cdot \|_{t_+}$ are equivalent, because $V_0^+ - V_k^+$ and V_0^+ differ by a bounded function.

By Proposition 2.4, T_+ has a positive form core, i.e. for every $u \in Q(T_+)^+$ there exists a sequence $\phi_j \in C_c^\infty(M)^+$ such that $\| \phi_j - u \|_{t_+} \to 0$ as $j \to \infty$. By (2.16) it follows that

$$\| \phi_j - u \|_{t_0} \to 0 \quad \text{as } j \to \infty.$$

To prove the theorem, it remains to show that for every $w \in Q(T_0)^+$, there exists a sequence $w_j \in Q(T_+)^+$ such that

$$\| w_j - w \|_{t_0} \to 0 \quad \text{as } j \to \infty. \quad (2.17)$$

Let $w \in Q(T_0)^+$. For every $k, l \in \mathbb{Z}_+$ define

$$w_l := \left(\frac{1}{l} T_0 + 1 \right)^{-1} w$$

and

$$w_k^l := \left(\frac{1}{l} T_k + 1 \right)^{-1} w.$$

This makes sense since $0 \leq T_0 \leq T_k$ are self-adjoint operators.

By Lemma 2.12 the operator $(T_k + 1)^{-1}$ is positivity preserving. Hence $w_k^l \in \text{Dom}(T_k)^+ \subset Q(T_k)^+ = Q(T_+)^+$.

Since the operators $(T_0 + 1)^{1/2}$ and $(T_0/l + 1)^{-1}$ commute, we have

$$\| w_l - w \|_{t_0} = \left\| \left(\frac{1}{l} T_0 + 1 \right)^{-1} - 1 \right\| (T_0 + 1)^{1/2} w,$$

where $\| \cdot \|$ denotes $L^2(M)$ norm.
Clearly, \[\left(\frac{1}{l}T_0 + 1 \right)^{-1} \rightarrow 1 \quad \text{strongly as} \quad l \rightarrow \infty. \]

This and (2.18) show that \[(2.19) \quad \|w_l - w\|_{t_0 + l} \rightarrow 0 \quad \text{as} \quad l \rightarrow \infty. \]

Fix \(l \in \mathbb{Z}_+ \). For each \(k \in \mathbb{Z}_+ \), let \(t_0 + l \) and \(t_k + l \) denote the quadratic forms corresponding to (positive self-adjoint) operators \(T_0 + l \) and \(T_k + l \), respectively. Let \(\| \cdot \|_{t_0 + l} \) and \(\| \cdot \|_{t_k + l} \) denote the norms in \(Q(T_0 + l) \) and \(Q(T_k + l) \), respectively; cf. (1.2). The corresponding inner products will be denoted by \(\langle \cdot, \cdot \rangle_{t_0 + l} \) and \(\langle \cdot, \cdot \rangle_{t_k + l} \).

Using (2.15), (2.16) and the Cauchy-Schwarz inequality we have for all \(w \in Q(T_0^+) \)
\[(2.20) \quad \|(T_k + l)^{-1}w - (T_0 + l)^{-1}w\|_{t_0 + l}^2 \\
= \|((T_k + l)^{-1}w)_0 + ((T_0 + l)^{-1}w)_0 - 2((T_k + l)^{-1}w, (T_0 + l)^{-1}w)_0 + ((T_0 + l)^{-1}w, (T_k + l)^{-1}w)\|_{t_0 + l}^2 \\
\leq \|(T_k + l)^{-1}w\|_{t_0 + l}^2 + \|((T_0 + l)^{-1}w\|_{t_0 + l}^2 - 2((T_k + l)^{-1}w, (T_0 + l)^{-1}w)\|_{t_0 + l}
\]
\[+ (1 - l)\|((T_k + l)^{-1}w\|_{t_0 + l}^2 + \|((T_0 + l)^{-1}w\|_{t_0 + l}^2 - 2((T_k + l)^{-1}w, (T_0 + l)^{-1}w)\|_{t_0 + l}
\]
\[\leq \|((T_0 + l)^{-1}w, (T_0 + l)^{-1}w - ((T_k + l)^{-1}w, (T_k + l)^{-1}w)\|_{t_0 + l}^2 - \|((T_0 + l)^{-1}w - (T_k + l)^{-1}w\|_{t_0 + l}^2, \]
where \(\langle \cdot, \cdot \rangle \) is the inner product in \(L^2(M) \) and \(\| \cdot \| \) is the norm in \(L^2(M) \).

By Lemma 2.16 it follows that for fixed \(l \in \mathbb{Z}_+ \), \(T_k + l \rightarrow T_0 + l \) in the strong resolvent sense as \(k \rightarrow \infty \).

Clearly, for any positive self-adjoint operator \(A, (A/l+1)^{-1} = l(A+l)^{-1} \). Therefore by (2.22), for a fixed \(l \in \mathbb{Z}_+ \),
\[\|w_l^k - w_l\|_{t_0 + l} \rightarrow 0 \quad \text{as} \quad k \rightarrow \infty. \]

This is equivalent to
\[(2.21) \quad \|w_l^k - w_l\|_{t_0} \rightarrow 0 \quad \text{as} \quad k \rightarrow \infty. \]

Since \(w_l^k \in Q(T_0^+) \), we can use (2.19) and (2.21) to choose a subsequence \(\{w_j\} \) from \(\{w_l^k\} \) so that (2.17) holds.

This concludes the proof of the theorem. \(\square \)

3. Proof of Theorem 1.5

We essentially follow the proof of Theorem 2 in [2]; however, we need to use Kato inequality (2.10) for operators on manifolds.

Without loss of generality, we may and we will assume that \(\Delta_M + V_0 \geq 0 \) and \(V_1 \geq 0 \).

Let us denote \(T_q := T_0 + V_1 \) and let \(t_{\min} \) and \(t_q \) be as in Sections 1.3 and 1.5. Since \(t_{\min} \) and \(t_q \) coincide on \(C_c^\infty(M) \), it is sufficient to show that \(C_c^\infty(M) \) is dense in the Hilbert space \(Q(T_q) = Q(T_0) \cap Q(V_1) \) with the inner product
\[\langle \cdot, \cdot \rangle_{t_q} := t_q \langle \cdot, \cdot \rangle + \langle \cdot, \cdot \rangle_{L^2(M)}, \]
where \(t_q (\cdot, \cdot) \) is the sesquilinear form obtained by polarization of \(t_q \).

Let \(v \in Q(T_q) \) be orthogonal to \(C_c^\infty(M) \) in \(\langle \cdot, \cdot \rangle_{t_q} \). This means that for all \(w \in C_c^\infty(M) \),
\[\langle (\Delta_M + V_0 + V_1)v, w \rangle_{L^2(M)} + \langle v, w \rangle_{L^2(M)} = 0. \]
This leads to the following distributional equality:

\[(3.1) \quad \Delta_M v = -(V_0 + V_1 + 1)v. \]

Since \(V_1 \in L^1_{\text{loc}}(M) \) and \(v \in Q(V_1) \), we have

\[2|V_1v| = 2|V_1||v| \leq |V_1| + |V_1||v|^2 \]

which immediately gives \(V_1 v \in L^1_{\text{loc}}(M) \).

Since \(V_0 \in L^2_{\text{loc}}(M) \), it follows that \(V_0 v \in L^1_{\text{loc}}(M) \). From (3.1) we obtain \(\Delta_M v \in L^1_{\text{loc}}(M) \).

Using Kato inequality (2.10) in case \(\nabla = d \) and (3.1), we get

\[(3.2) \quad \Delta_M |v| \leq \text{Re}(\text{sign} \nabla \Delta_M v) = -V_0 |v| - V_1 |v| - |v| \leq -(V_0 + 1)|v|. \]

The last inequality in (3.2) holds since \(V_1 \geq 0 \).

From (3.2), we obtain the following distributional inequality:

\[(3.3) \quad (\Delta_M + V_0 + 1)|v| \leq 0. \]

Let \(T_0 \) be as in the hypothesis, and let \(t_0 \) denote the closed quadratic form associated to \(T_0 \).

Using (3.3), we get

\[(3.4) \quad ((T_0 + 1)w, |v|)_{L^2(M)} \leq 0 \quad \text{for all } w \in C_c^\infty(M)^+. \]

Since \(v \in Q(T_0) \), Corollary 2.11 gives \(|v| \in Q(T_0) \). Therefore, we can write (3.4) as

\[(3.5) \quad (w, |v|)_{t_0} \leq 0 \quad \text{for all } w \in C_c^\infty(M)^+, \]

where \((\cdot, \cdot)_{t_0} = t_0(\cdot, \cdot)_{L^2(M)} \) denotes the inner product in \(Q(T_0) \).

Let \(f := (T_0 + 1)^{-1}|v| \). By Proposition 2.13, \((T_0 + 1)^{-1} \) is positivity preserving, so \(f \in \text{Dom}(T_0)^+ \subset Q(T_0)^+ \).

By Theorem 2.2, \(T_0 \) has a positive form core. Therefore, there exists a sequence \(f_k \in C_c^\infty(M)^+ \) such that

\[(3.6) \quad \lim_{k \to \infty} (f_k, |v|)_{t_0} = (f, |v|)_{t_0} = ((T_0 + 1)^{-1}|v|, |v|)_{t_0} = \|v\|^2, \]

where \(v \) and \((\cdot, \cdot)_{t_0} \) are as in (3.5), and \(\| \cdot \| \) is the norm in \(L^2(M) \).

From (3.5) and (3.6) we obtain \(\|v\|^2 \leq 0 \), i.e. \(v = 0 \).

This shows that \(C_c^\infty(M) \) is dense in \(Q(T_0) \), and the theorem is proven. \([\square]\)

References

DEPARTMENT OF MATHEMATICS, NORTHEASTERN UNIVERSITY, BOSTON, MASSACHUSETTS 02115

E-mail address: ogmilato@lynx.neu.edu

Current address: Department of Mathematics, Fitchburg State College, Fitchburg, Massachusetts 01420

E-mail address: omilatovic@fsc.edu