Almost constrained subspaces of Banach spaces
HTML articles powered by AMS MathViewer
- by Pradipta Bandyopadhyay and S. Dutta
- Proc. Amer. Math. Soc. 132 (2004), 107-115
- DOI: https://doi.org/10.1090/S0002-9939-03-07146-6
- Published electronically: July 14, 2003
- PDF | Request permission
Abstract:
In this paper, we obtain some sufficient conditions for an almost constrained subspace to be constrained (in fact, by a unique norm 1 projection), which improves significantly upon all existing conditions of similar type with significantly simpler proofs.References
- P. Bandyopadhayay, S. Basu, S. Dutta and B. L. Lin, Very nonconstrained subspaces of Banach spaces, Preprint 2002 (submitted).
- Pradipta Bandyopadhyay and T. S. S. R. K. Rao, Central subspaces of Banach spaces, J. Approx. Theory 103 (2000), no.Β 2, 206β222. MR 1749962, DOI 10.1006/jath.1999.3420
- Bernard Beauzamy and Bernard Maurey, Points minimaux et ensembles optimaux dans les espaces de Banach, J. Functional Analysis 24 (1977), no.Β 2, 107β139. MR 0428014, DOI 10.1016/0022-1236(77)90049-0
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- Shaul R. Foguel, On a theorem by A. E. Taylor, Proc. Amer. Math. Soc. 9 (1958), 325. MR 93696, DOI 10.1090/S0002-9939-1958-0093696-3
- Gilles Godefroy, Existence and uniqueness of isometric preduals: a survey, Banach space theory (Iowa City, IA, 1987) Contemp. Math., vol. 85, Amer. Math. Soc., Providence, RI, 1989, pp.Β 131β193. MR 983385, DOI 10.1090/conm/085/983385
- G. Godefroy and N. J. Kalton, The ball topology and its applications, Banach space theory (Iowa City, IA, 1987) Contemp. Math., vol. 85, Amer. Math. Soc., Providence, RI, 1989, pp.Β 195β237. MR 983386, DOI 10.1090/conm/085/983386
- G. Godini, On minimal points, Comment. Math. Univ. Carolin. 21 (1980), no.Β 3, 407β419. MR 590122
- P. Harmand, D. Werner, and W. Werner, $M$-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin, 1993. MR 1238713, DOI 10.1007/BFb0084355
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279
- Joram Lindenstrauss, On projections with norm $1β$an example, Proc. Amer. Math. Soc. 15 (1964), 403β406. MR 161126, DOI 10.1090/S0002-9939-1964-0161126-1
- Joram Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964), 112. MR 179580
- T. S. S. R. K. Rao, Intersection properties of balls in tensor products of some Banach spaces. II, Indian J. Pure Appl. Math. 21 (1990), no.Β 3, 275β284. MR 1044265
- George F. Simmons, Introduction to topology and modern analysis, McGraw-Hill Book Co., Inc., New York-San Francisco, Calif.-Toronto-London 1963. MR 0146625
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Daniel E. Wulbert, Some complemented function spaces in $C(X)$, Pacific J. Math. 24 (1968), 589β602. MR 223868
Bibliographic Information
- Pradipta Bandyopadhyay
- Affiliation: Statistics and Mathematics Division, Indian Statistical Institute, 203, B. T. Road, Kolkata 700 108, India
- Email: pradipta@isical.ac.in
- S. Dutta
- Affiliation: Statistics and Mathematics Division, Indian Statistical Institute, 203, B. T. Road, Kolkata 700 108, India
- Email: sudipta_r@isical.ac.in
- Received by editor(s): August 9, 2002
- Published electronically: July 14, 2003
- Additional Notes: This work was partially supported by IFCPAR grant no. 2601-1.
- Communicated by: Jonathan M. Borwein
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 107-115
- MSC (2000): Primary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-03-07146-6
- MathSciNet review: 2021253