The Lusternik-Schnirelmann category of $\operatorname {Sp}(3)$
HTML articles powered by AMS MathViewer
- by Lucía Fernández-Suárez, Antonio Gómez-Tato, Jeffrey Strom and Daniel Tanré
- Proc. Amer. Math. Soc. 132 (2004), 587-595
- DOI: https://doi.org/10.1090/S0002-9939-03-07019-9
- Published electronically: June 12, 2003
- PDF | Request permission
Abstract:
We show that the Lusternik-Schnirelmann category of the symplectic group $\operatorname {Sp}(3)$ is $5$. This L-S category coincides with the cone length and the stable weak category.References
- William Browder and Edwin Spanier, $H$-spaces and duality, Pacific J. Math. 12 (1962), 411–414. MR 144346, DOI 10.2140/pjm.1962.12.411
- Octavian Cornea, There is just one rational cone-length, Trans. Amer. Math. Soc. 344 (1994), no. 2, 835–848. MR 1260200, DOI 10.1090/S0002-9947-1994-1260200-X
- Lucía Fernández-Suárez, Antonio Gómez-Tato, and Daniel Tanré, Hopf-Ganea invariants and weak LS category, Topology Appl. 115 (2001), no. 3, 305–316. MR 1848131, DOI 10.1016/S0166-8641(00)00071-7
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417–427. MR 229240, DOI 10.1215/ijm/1256054563
- Tudor Ganea, Some problems on numerical homotopy invariants, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971) Lecture Notes in Math., Vol. 249, Springer, Berlin, 1971, pp. 23–30. MR 0339147
- Norio Iwase, Ganea’s conjecture on Lusternik-Schnirelmann category, Bull. London Math. Soc. 30 (1998), no. 6, 623–634. MR 1642747, DOI 10.1112/S0024609398004548
- N. Iwase, $A_{\infty }$-method in Lusternik-Schnirelmann category, Topology 41 (2002), 695-723.
- I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), no. 4, 331–348. MR 516214, DOI 10.1016/0040-9383(78)90002-2
- I. M. James and W. Singhof, On the category of fibre bundles, Lie groups, and Frobenius maps, Higher homotopy structures in topology and mathematical physics (Poughkeepsie, NY, 1996) Contemp. Math., vol. 227, Amer. Math. Soc., Providence, RI, 1999, pp. 177–189. MR 1665466, DOI 10.1090/conm/227/03256
- P. Lambrechts, D. Stanley and L. Vandembroucq, Embeddings up to homotopy of two-cones in Euclidean space, Trans. Amer. Math. Soc. 354 (2002), 3973–4013.
- François Laudenbach and Jean-Claude Sikorav, Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent, Invent. Math. 82 (1985), no. 2, 349–357 (French). MR 809719, DOI 10.1007/BF01388807
- L. Lusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationnels, Hermann, Paris, 1934.
- Howard J. Marcum, Fibrations over double mapping cylinders, Illinois J. Math. 24 (1980), no. 2, 344–358. MR 575072
- P.-M. Moyaux and L. Vandembroucq, Lagrangian intersections in cotangent bundles, Preprint (2002).
- Yuli B. Rudyak, On category weight and its applications, Topology 38 (1999), no. 1, 37–55. MR 1644063, DOI 10.1016/S0040-9383(97)00101-8
- H. Scheerer, D. Stanley and D. Tanré, Fibrewise construction applied to Lusternik-Schnirelmann category, Israel J. of Math. 131 (2002), 333–359.
- Paul A. Schweitzer, Secondary cohomology operations induced by the diagonal mapping, Topology 3 (1965), 337–355. MR 182969, DOI 10.1016/0040-9383(65)90002-9
- Wilhelm Singhof, On the Lusternik-Schnirelmann category of Lie groups, Math. Z. 145 (1975), no. 2, 111–116. MR 391075, DOI 10.1007/BF01214775
- Wilhelm Singhof, On the Lusternik-Schnirelmann category of Lie groups. II, Math. Z. 151 (1976), no. 2, 143–148. MR 425952, DOI 10.1007/BF01213991
- J. Strom, Decomposition of the diagonal map. Topology 42 (2003), 349–364.
- Jeffrey Strom, Essential category weight and phantom maps, Cohomological methods in homotopy theory (Bellaterra, 1998) Progr. Math., vol. 196, Birkhäuser, Basel, 2001, pp. 409–415. MR 1851266
- Floris Takens, The minimal number of critical points of a function on a compact manifold and the Lusternik-Schnirelman category, Invent. Math. 6 (1968), 197–244. MR 236942, DOI 10.1007/BF01404825
- Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217
- L. Vandembroucq, Fiberwise suspension and Lusternik-Schnirelmann category, Topology 41 (2002), 1239-1258.
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508, DOI 10.1007/978-1-4612-6318-0
Bibliographic Information
- Lucía Fernández-Suárez
- Affiliation: Centro de Matemática (CMAT), Universidade do Minho (Gualtar), 4710 Braga, Portugal
- Email: lfernandez@math.uminho.pt
- Antonio Gómez-Tato
- Affiliation: Departamento de Xeometría e Topoloxía, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, España
- Email: agtato@usc.es
- Jeffrey Strom
- Affiliation: Department of Mathematics, Western Michigan University, 1903 W. Michigan Ave., Kalamazoo, Michigan 49008
- Email: jeffrey.strom@wmich.edu
- Daniel Tanré
- Affiliation: Département de Mathématiques, UMR 8524, Université de Lille 1, 59655 Villeneuve d’Ascq Cedex, France
- MR Author ID: 205734
- Email: Daniel.Tanre@agat.univ-lille1.fr
- Received by editor(s): March 20, 2002
- Received by editor(s) in revised form: September 10, 2002
- Published electronically: June 12, 2003
- Additional Notes: The first and second authors were partially supported by the MCT Research project BFM2000-0345
- Communicated by: Paul Goerss
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 587-595
- MSC (2000): Primary 55M30; Secondary 22E20
- DOI: https://doi.org/10.1090/S0002-9939-03-07019-9
- MathSciNet review: 2022385