Maximal elements in noncompact spaces with application to equilibria
HTML articles powered by AMS MathViewer
- by Shiow-Yu Chang
- Proc. Amer. Math. Soc. 132 (2004), 535-541
- DOI: https://doi.org/10.1090/S0002-9939-03-07054-0
- Published electronically: June 11, 2003
- PDF | Request permission
Abstract:
A new maximal theorem for $L_S$-majorized correspondences in noncompact spaces is presented and applied to obtain an equilibrium existence theorem for noncompact abstract economies. The corresponding results of Borglin and Keiding (1976), Yannelis and Prabhakar (1983), Ding and Tan (1993), Yuan and Tarafdar (1996), and Ding and Yuan (1998) are generalized by our results.References
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Anders Borglin and Hans Keiding, Existence of equilibrium actions and of equilibrium: a note on the “new” existence theorems, J. Math. Econom. 3 (1976), no. 3, 313–316. MR 444091, DOI 10.1016/0304-4068(76)90016-1
- S. Y. Chang, A generalization of KKM principle and its applications, Soochow J. Math. 15 (1989), no. 1, 7–17. MR 1025967
- Shiow-Yu Chang, On the Nash equilibrium, Soochow J. Math. 16 (1990), no. 2, 241–248. MR 1083760
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Xie Ping Ding, Won Kyu Kim, and Kok-Keong Tan, Equilibria of noncompact generalized games with ${\scr L}^*$-majorized preference correspondences, J. Math. Anal. Appl. 164 (1992), no. 2, 508–517. MR 1151050, DOI 10.1016/0022-247X(92)90130-6
- Xie Ping Ding and Kok-Keong Tan, On equilibria of noncompact generalized games, J. Math. Anal. Appl. 177 (1993), no. 1, 226–238. MR 1224816, DOI 10.1006/jmaa.1993.1254
- Xie-Ping Ding and George Xian-Zhi Yuan, The study of existence of equilibria for generalized games without lower semicontinuity in locally topological vector spaces, J. Math. Anal. Appl. 227 (1998), no. 2, 420–438. MR 1654142, DOI 10.1006/jmaa.1998.6105
- D. Gale and A. Mas-Colell, On the role of complete, transitive preferences in equilibrium theory, in: G. Schwödiauer, ed., Equilibrium and disequilibrium in economic theory (Reidel, Dordrecht) (1978), 7-14.
- Won Kyu Kim, Existence of maximal element and equilibrium for a nonparacompact $N$-person game, Proc. Amer. Math. Soc. 116 (1992), no. 3, 797–807. MR 1123657, DOI 10.1090/S0002-9939-1992-1123657-4
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Wayne Shafer and Hugo Sonnenschein, Equilibrium in abstract economies without ordered preferences, J. Math. Econom. 2 (1975), no. 3, 345–348. MR 398464, DOI 10.1016/0304-4068(75)90002-6
- Kok-Keong Tan and Xian-Zhi Yuan, Existence of equilibrium for abstract economies, J. Math. Econom. 23 (1994), no. 3, 243–251. MR 1280171, DOI 10.1016/0304-4068(93)00609-Z
- Nicholas C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econom. 12 (1983), no. 3, 233–245. MR 743037, DOI 10.1016/0304-4068(83)90041-1
- Nicholas C. Yannelis, Maximal elements over noncompact subsets of linear topological spaces, Econom. Lett. 17 (1985), no. 1-2, 133–136. MR 785646, DOI 10.1016/0165-1765(85)90143-0
- Xian-Zhi Yuan and Enayet Tarafdar, Existence of equilibria of generalized games without compactness and paracompactness, Nonlinear Anal. 26 (1996), no. 5, 893–902. MR 1362761, DOI 10.1016/0362-546X(94)00329-9
Bibliographic Information
- Shiow-Yu Chang
- Affiliation: Department of Mathematics, Soochow University, Taipei, Taiwan, Republic of China
- Email: sychang@math.scu.edu.tw
- Received by editor(s): January 30, 2002
- Received by editor(s) in revised form: September 30, 2002
- Published electronically: June 11, 2003
- Communicated by: Joseph A. Ball
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 535-541
- MSC (2000): Primary 91A13; Secondary 52A07, 91B50
- DOI: https://doi.org/10.1090/S0002-9939-03-07054-0
- MathSciNet review: 2022379