On the genus of elliptic fibrations
HTML articles powered by AMS MathViewer
- by J.-B. Gatsinzi
- Proc. Amer. Math. Soc. 132 (2004), 597-606
- DOI: https://doi.org/10.1090/S0002-9939-03-07203-4
- Published electronically: August 20, 2003
- PDF | Request permission
Abstract:
A simply connected topological space is called elliptic if both $\pi _*(X, \mathbb {Q})$ and $H^*(X, \mathbb {Q})$ are finite-dimensional $\mathbb {Q}$-vector spaces. In this paper, we consider fibrations for which the fibre $X$ is elliptic and $H^*(X, \mathbb {Q})$ is evenly graded. We show that in the generic cases, the genus of such a fibration is completely determined by generalized Chern classes of the fibration.References
- Albrecht Dold, Halbexakte Homotopiefunktoren, Lecture Notes in Mathematics, vol. 12, Springer-Verlag, Berlin-New York, 1966 (German). MR 0198464, DOI 10.1007/BFb0084856
- Albrecht Dold and Richard Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285–305. MR 101521
- Jean-Paul Doeraene, L.S.-category in a model category, J. Pure Appl. Algebra 84 (1993), no. 3, 215–261. MR 1201256, DOI 10.1016/0022-4049(93)90001-A
- Emmanuel Dror and Alexander Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), no. 3, 187–197. MR 546789, DOI 10.1016/0040-9383(79)90002-8
- Yves Félix, La dichotomie elliptique-hyperbolique en homotopie rationnelle, Astérisque 176 (1989), 187 (French, with English summary). MR 1035582
- Yves Félix and Stephen Halperin, Rational LS category and its applications, Trans. Amer. Math. Soc. 273 (1982), no. 1, 1–38. MR 664027, DOI 10.1090/S0002-9947-1982-0664027-0
- T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417–427. MR 229240, DOI 10.1215/ijm/1256054563
- Stephen Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977), 173–199. MR 461508, DOI 10.1090/S0002-9947-1977-0461508-8
- S. Halperin, Lectures on minimal models, Mém. Soc. Math. France (N.S.) 9-10 (1983), 261. MR 736299
- I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), no. 4, 331–348. MR 516214, DOI 10.1016/0040-9383(78)90002-2
- Gregory Lupton, Note on a conjecture of Stephen Halperin’s, Topology and combinatorial group theory (Hanover, NH, 1986/1987; Enfield, NH, 1988) Lecture Notes in Math., vol. 1440, Springer, Berlin, 1990, pp. 148–163. MR 1082989, DOI 10.1007/BFb0084459
- W. Meier, Rational universal fibrations and flag manifolds, Math. Ann. 258 (1981/82), no. 3, 329–340. MR 649203, DOI 10.1007/BF01450686
- M. Schlessinger and J. Stasheff, Deformations theory and rational homotopy type, preprint.
- H. Shiga and M. Tezuka, Rational fibrations, homogeneous spaces with positive Euler characteristics and Jacobians, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 1, 81–106 (English, with French summary). MR 894562, DOI 10.5802/aif.1078
- Don Stanley, The sectional category of spherical fibrations, Proc. Amer. Math. Soc. 128 (2000), no. 10, 3137–3143. MR 1691006, DOI 10.1090/S0002-9939-00-05468-X
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078, DOI 10.1007/BF02684341
- Daniel Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics, vol. 1025, Springer-Verlag, Berlin, 1983 (French). MR 764769, DOI 10.1007/BFb0071482
- Daniel Tanré, Fibrations et classifiants, Algebraic homotopy and local algebra (Luminy, 1982) Astérisque, vol. 113, Soc. Math. France, Paris, 1984, pp. 132–147 (French, with English summary). MR 749048
- Jean-Claude Thomas, Rational homotopy of Serre fibrations, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 3, v, 71–90 (English, with French summary). MR 638617
Bibliographic Information
- J.-B. Gatsinzi
- Affiliation: University of Botswana, Private Bag 0022, Gaborone, Botswana
- Email: gatsinzj@mopipi.ub.bw
- Received by editor(s): October 6, 2001
- Received by editor(s) in revised form: September 19, 2002
- Published electronically: August 20, 2003
- Additional Notes: Supported by a grant from Université Catholique de Louvain
- Communicated by: Paul Goerss
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 597-606
- MSC (2000): Primary 55P62; Secondary 55M30
- DOI: https://doi.org/10.1090/S0002-9939-03-07203-4
- MathSciNet review: 2022386