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A NOTE ON KNESER-HAKEN FINITENESS

DAVID BACHMAN

(Communicated by Ronald A. Fintushel)

Abstract. Kneser-Haken finiteness asserts that for each compact 3-manifold
M there is an integer c(M) such that any collection of k > c(M) closed,
essential, 2-sided surfaces in M must contain parallel elements. We show
here that if M is closed, then twice the number of tetrahedra in a (pseudo)-
triangulation of M suffices for c(M).

1. Introduction

A crucial step in Kneser’s proof of the existence of prime factorizations [Kne29]
of 3-manifolds is the following theorem:

Theorem 1.1. Suppose that M is a compact 3-manifold. Then there is an integer
c(M) such that if S = {S1, ..., Sk} is any collection of k > c(M) pairwise disjoint
2-spheres in Int(M), then the closure of some component of M − S is a punctured
3-cell.

In [Hak61] W. Haken generalized this theorem to collections of incompressible
surfaces. The precise result is the following:

Theorem 1.2. Suppose that M is a compact, irreducible 3-manifold. Then there is
an integer c(M) such that if S = {S1, ..., Sk} is any collection of k > c(M) pairwise
disjoint, closed, 2-sided incompressible surfaces in Int(M), then the closure of some
component of M − S is a product.

Theorems 1.1 and 1.2 have become standard topics of introductory courses on
the topology of 3-manifolds. Together they are often referred to as “Kneser-Haken
finiteness”. Several proofs exist, each giving different quantities for c(M). Most use
some function of the number of tetrahedra t in a triangulation of M . For example,
in [Hak68] Haken uses 61t for c(M). In [Hem76], one of the standard texts used
in introductory 3-manifolds courses, J. Hempel uses c(M) = 6t + dimH1(M) +
dimH1(M,Z2). In lecture notes available on the world wide web A. Hatcher [Hat]
uses the bound c(M) = 8t+ dimH1(M,Z2). A. Casson also has a proof in a set of
widely distributed, handwritten lecture notes from a course in China. His bound
is similar: 6t+ 2dimH2(M,Z2). W. Neumann took up the task of typing Casson’s
notes [Neu], but gives a different proof for Kneser’s theorem. He credits this proof
to Dave Bayer, who finds that if M is closed, the quantity 6t is sufficient. Finally,
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in [JR] Jaco and Rubinstein mention, without proof, that in the case that M is
closed one can take 5t for c(M).

In this note we show that if M is closed, then we can take c(M) to be just 2t. To
prove this we build on the “classical” proof by borrowing techniques from Bayer’s
proof and the proof of Jaco and Rubinstein mentioned in the previous paragraph,
as well as introducing some new ideas of our own.

Of course, for Kneser and Haken the important part of Theorems 1.1 and 1.2 is
the existence of some bound. The bound itself was unimportant. However, with
the aid of computers people have begun tabulating 3-manifolds with relatively few
tetrahedra and studying their properties. For such manifolds knowledge of the best
bound for Kneser-Haken finiteness becomes relevant.

In the interest of brevity, and by virtue of the fact that Kneser-Haken finiteness
is such a standard topic of introductory courses, we will assume here that the reader
is familiar with at least one proof of Theorem 1.1 which uses the theory of normal
surfaces in triangulated 3-manifolds.

The author would like to thank his thesis advisor, Cameron McA. Gordon, for
his initial exposure to Kneser-Haken Finiteness and comments on the first draft of
this paper. The author would also like to thank Saul Schleimer for pointing him
towards Bayer’s proof, and for further comments on an earlier draft. Finally, the
author is greatly indebted to William Jaco for explaining his proof of Kneser-Haken
finiteness, providing Claim 2.2, and making several other helpful suggestions.

2. Theorem and proof

In the classical setting of Theorems 1.1 and 1.2 M is assumed to be triangulated.
Recently pseudo-triangulations have gained in popularity, so we assume this is
the setting for our main result. Note that a pseudo-triangulation is one in which
simplices are allowed to meet each other (and themselves) in a collection of lower
dimensional simplices. This allows, for example, a single 3-simplex to be glued to
itself along two of its faces.

Theorem 2.1. Let M be a closed, irreducible, orientable 3-manifold equipped with
a (pseudo)-triangulation with t 3-simplices. If Int(M) contains a collection of k
closed, nonparallel, essential, 2-sided surfaces, then

k ≤ 2t.

Proof. Let S = {S1, ..., Sk} be a collection of essential, nonparallel, 2-sided surfaces
in a compact 3-manifold M with triangulation T . Let T i denote the i-skeleton of
T . Assume that S has been isotoped to have least weight (i.e., |S ∩ T 1| is assumed
to be minimal) and is normal with respect to T .

Let M∗ denote M with a regular neighborhood of T 0 removed. Note that ∂M∗

is a collection of spheres, each made up of normal triangles. If two surfaces are
parallel in M∗, then they are parallel in M , so the elements of S are nonparallel in
M∗. If X is any subset of M , then let X∗ = X ∩M∗.

Let ∆ be a 3-simplex of T . A component of (∂∆)∗ − S is called good if it is an
annulus. Otherwise it is bad. Call a component of ∆∗ −S a good cell or a bad cell
according to whether its intersection with (∂∆)∗ is good or bad. Note that there
are precisely two possibilities for bad cells. These are a truncated tetrahedron (i.e.,
a subset of a tetrahedron bounded by 4 nonparallel normal triangles) or a truncated
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prism (as outlined in bold in Figure 1). Good cells are of the form (triangle)× I
or (quadrilateral)× I.

Cut M∗ along S and call a component of M∗−S good if it is made up of good
cells and bad otherwise. Each good component is an I-bundle over some surface.
Note that no such I-bundle is trivial since that would imply that two elements of
S were parallel or that one was parallel to the link of a vertex of T 0.

A surface on the boundary of a component of M∗ − S which is not the link of
a vertex will be referred to as a remnant of S. As there are k elements of S, and
each such surface is 2-sided, there must be 2k remnants. A remnant is good or bad
according to whether it appears on the boundary of a good or bad component of
M∗−S. Let g denote the number of good remnants and b the number of bad ones,
so that 2k = g + b.

For each good remnant there is a twisted I-bundle embedded in M . Each such
I-bundle contributes one Z2 direct summand to H1(M ;Z2). The proof of the
following claim was related to the author by William Jaco.

Claim 2.2. The rank of H1(M ;Z2) is bounded above by t+ 1.

Proof. Let e and v denote the number of edges and vertices of T . As M is closed
we have e = t + v. Let Γ be a maximal tree of T 1, eΓ the number of edges in Γ,
and eN the number of edges not in Γ. Then 1 = χ(Γ) = v − eΓ. Combining this
with the equalities e = t + v and eΓ + eN = e we obtain eN = t+ 1. The proof is
complete by noting that the rank of H1(M ;Z2) is bounded above by eN . �

We say a triangle or quadrilateral (or, in general, a normal disk) is bad if it lies
in the intersection of a bad remnant with a bad cell. Let s and q denote the number
of bad triangles and bad quadrilaterals appearing on the boundaries of the bad cells
of M∗−S. Note that every tetrahedron contains at most four bad triangles and at
most two bad quadrilaterals, so that s ≤ 4t and q ≤ 2t.

Claim 2.3. Every bad remnant contains at least two bad normal disks.

Proof. Every bad remnant meets at least one bad cell. Hence it contains at least
one bad triangle or one bad quadrilateral. Suppose first that there is a bad remnant,
R, which contains a bad quadrilateral Q and no other bad normal disk. Note that
Q lies on the boundary of a truncated prism. Such a cell has a pair of hexagonal
faces. Since Q is the unique bad normal disk of R, and M is orientable, we conclude
that these hexagonal faces are identified as in Figure 1. Inspection of this figure
also shows that there is a disk D with boundary on R. If ∂D is essential on R, then
we contradict the assumption that R was incompressible. On the other hand, if ∂D
is inessential on R, then we contradict the assumption that S has minimal weight,
since compressing R along D produces an isotopic normal surface which meets T 1

in fewer points.
If R contains a bad triangle ∆, then there are two cases. Suppose first that

∆ appears on the boundary of a truncated tetrahedon. Such a bad cell has four
hexagonal faces where it meets other bad cells. As all three sides of ∆ lie on such
a face, and at most two can be identified, we conclude that ∆ is glued to at least
one other bad normal disk.

The final case is when ∆ lies on the boundary of a truncated prism. But if R
contains no other bad normal disks then again it must be the case that the hexagonal
faces of the prism are glued as in Figure 1. Once again we conclude that either there
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Figure 1. A single bad quad, Q, in a truncated prism.

is a compression for some other remnant (the one that contains the quadrilateral
of the same prism) or the collection S did not have minimal weight. �

It follows immediately from Claim 2.3 that the number of bad remnants b is
bounded above by s+q

2 . Combining the above inequalities we now obtain

2k = g + b

≤ t+ 1 +
s+ q

2

≤ t+ 1 +
4t+ 2t

2
= 4t+ 1.

We conclude that k ≤ 2t+ 1
2 . However, since k is an integer it must be the case

that k ≤ 2t. �
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