## On an example of Aspinwall and Morrison

HTML articles powered by AMS MathViewer

- by Balázs Szendrői PDF
- Proc. Amer. Math. Soc.
**132**(2004), 621-632 Request permission

## Abstract:

In this paper, a family of smooth multiply-connected Calabi–Yau threefolds is investigated. The family presents a counterexample to global Torelli as conjectured by Aspinwall and Morrison.## References

- Paul S. Aspinwall and David R. Morrison,
*Chiral rings do not suffice: $N=(2,2)$ theories with nonzero fundamental group*, Phys. Lett. B**334**(1994), no. 1-2, 79–86. MR**1290072**, DOI 10.1016/0370-2693(94)90594-0 - M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa,
*Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes*, Comm. Math. Phys.**165**(1994), no. 2, 311–427. MR**1301851**, DOI 10.1007/BF02099774 - David A. Cox and Sheldon Katz,
*Mirror symmetry and algebraic geometry*, Mathematical Surveys and Monographs, vol. 68, American Mathematical Society, Providence, RI, 1999. MR**1677117**, DOI 10.1090/surv/068 - Barbara Fantechi and Rita Pardini,
*Automorphisms and moduli spaces of varieties with ample canonical class via deformations of abelian covers*, Comm. Algebra**25**(1997), no. 5, 1413–1441. MR**1444010**, DOI 10.1080/00927879708825927 - William Fulton,
*Introduction to toric varieties*, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR**1234037**, DOI 10.1515/9781400882526 - Phillip A. Griffiths,
*Periods of integrals on algebraic manifolds. I. Construction and properties of the modular varieties*, Amer. J. Math.**90**(1968), 568–626. MR**229641**, DOI 10.2307/2373545 - Mark Gross,
*Special Lagrangian fibrations. II. Geometry. A survey of techniques in the study of special Lagrangian fibrations*, Surveys in differential geometry: differential geometry inspired by string theory, Surv. Differ. Geom., vol. 5, Int. Press, Boston, MA, 1999, pp. 341–403. MR**1772274**, DOI 10.4310/SDG.1999.v5.n1.a4 - Leo F. Epstein,
*A function related to the series for $e^{e^x}$*, J. Math. Phys. Mass. Inst. Tech.**18**(1939), 153–173. MR**58**, DOI 10.1002/sapm1939181153 - János Kollár,
*Flops*, Nagoya Math. J.**113**(1989), 15–36. MR**986434**, DOI 10.1017/S0027763000001240 - Hideyuki Matsumura and Paul Monsky,
*On the automorphisms of hypersurfaces*, J. Math. Kyoto Univ.**3**(1963/64), 347–361. MR**168559**, DOI 10.1215/kjm/1250524785 - Yoichi Miyaoka,
*The Chern classes and Kodaira dimension of a minimal variety*, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 449–476. MR**946247**, DOI 10.2969/aspm/01010449 - Z. Ran,
*Unobstructedness of Calabi-Yau orbi-Kleinfolds*, J. Math. Phys.**39**(1998), no. 1, 625–629. MR**1489640**, DOI 10.1063/1.532325 - Balázs Szendröi,
*Calabi-Yau threefolds with a curve of singularities and counterexamples to the Torelli problem*, Internat. J. Math.**11**(2000), no. 3, 449–459. MR**1769616**, DOI 10.1142/S0129167X00000229 - Balázs Szendrői,
*On a conjecture of Cox and Katz*, Math. Z.**240**(2002), no. 2, 233–241. MR**1900310**, DOI 10.1007/s002090100377 - Pavlos Tzermias,
*The group of automorphisms of the Fermat curve*, J. Number Theory**53**(1995), no. 1, 173–178. MR**1344839**, DOI 10.1006/jnth.1995.1085

## Additional Information

**Balázs Szendrői**- Affiliation: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
- Address at time of publication: Department of Mathematics, Utrecht University, P.O. Box 80010, NL-3508 TA Utrecht, The Netherlands – and – Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, P.O. Box 127, H-1364 Budapest, Hungary
- Email: szendroi@math.uu.nl
- Received by editor(s): October 25, 2001
- Received by editor(s) in revised form: July 20, 2002
- Published electronically: September 29, 2003
- Additional Notes: This research was partially supported by an Eastern European Research Bursary from Trinity College, Cambridge and an ORS Award from the British Government
- Communicated by: Michael Stillman
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**132**(2004), 621-632 - MSC (2000): Primary 14J32, 14C34, 14M25
- DOI: https://doi.org/10.1090/S0002-9939-03-07084-9
- MathSciNet review: 2019936