The BGQ spectral sequence for noncommutative spaces
HTML articles powered by AMS MathViewer
- by Christopher J. Pappacena
- Proc. Amer. Math. Soc. 132 (2004), 633-639
- DOI: https://doi.org/10.1090/S0002-9939-03-07128-4
- Published electronically: October 8, 2003
- PDF | Request permission
Abstract:
We prove an analogue of the Brown-Gersten-Quillen (BGQ) spectral sequence for noncommutative spaces. As applications, we consider this spectral sequence over affine and projective spaces associated to right fully bounded noetherian (FBN) rings.References
- M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228–287. MR 1304753, DOI 10.1006/aima.1994.1087
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821, DOI 10.24033/bsmf.1583
- K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR 1020298
- K. R. Goodearl and J. T. Stafford, The graded version of Goldie’s theorem, Algebra and its applications (Athens, OH, 1999) Contemp. Math., vol. 259, Amer. Math. Soc., Providence, RI, 2000, pp. 237–240. MR 1780524, DOI 10.1090/conm/259/04098
- Robert Gordon and J. C. Robson, Krull dimension, Memoirs of the American Mathematical Society, No. 133, American Mathematical Society, Providence, R.I., 1973. MR 0352177
- C. Năstăsescu and F. van Oystaeyen, Graded ring theory, North-Holland Mathematical Library, vol. 28, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 676974
- Christopher J. Pappacena, The injective spectrum of a noncommutative space, J. Algebra 250 (2002), no. 2, 559–602. MR 1899866, DOI 10.1006/jabr.2001.9114
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR 0338129
- S. Paul Smith, Subspaces of non-commutative spaces, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2131–2171. MR 1885647, DOI 10.1090/S0002-9947-02-02963-X
- Michel Van den Bergh, Blowing up of non-commutative smooth surfaces, Mem. Amer. Math. Soc. 154 (2001), no. 734, x+140. MR 1846352, DOI 10.1090/memo/0734
Bibliographic Information
- Christopher J. Pappacena
- Affiliation: Department of Mathematics, Baylor University, Waco, Texas 76798
- Email: Chris_Pappacena@baylor.edu
- Received by editor(s): August 18, 2002
- Published electronically: October 8, 2003
- Additional Notes: The author was partially supported by a postdoctoral fellowhip from the Mathematical Sciences Research Institute, a summer sabbatical from Baylor University, and a grant from the National Security Agency.
- Communicated by: Martin Lorenz
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 633-639
- MSC (2000): Primary 18E15, 19D10; Secondary 14A22, 16P40, 16W50, 19D50
- DOI: https://doi.org/10.1090/S0002-9939-03-07128-4
- MathSciNet review: 2019937