Refining the constant in a maximum principle for the Bergman space
HTML articles powered by AMS MathViewer
- by Chunjie Wang
- Proc. Amer. Math. Soc. 132 (2004), 853-855
- DOI: https://doi.org/10.1090/S0002-9939-03-07137-5
- Published electronically: September 5, 2003
- PDF | Request permission
Abstract:
Let $A^2(\mathbb {D})$ be the Bergman space over the open unit disk $\mathbb {D}$ in the complex plane. Korenblum conjectured that there is an absolute constant $c,~0<c<1$, such that whenever $|f(z)|\leq |g(z)|$ ($f,g\in A^2(\mathbb {D})$) in the annulus $c<|z|<1$, then $\|f\|\leq \|g\|$. In this note we give an example to show that $c<0.69472.$References
- Boris Korenblum, A maximum principle for the Bergman space, Publ. Mat. 35 (1991), no. 2, 479–486. MR 1201570, DOI 10.5565/PUBLMAT_{3}5291_{1}2
- Walter Kurt Hayman, On a conjecture of Korenblum, Analysis (Munich) 19 (1999), no. 2, 195–205. MR 1705360, DOI 10.1524/anly.1999.19.2.195
- A. Hinkkanen, On a maximum principle in Bergman space, J. Anal. Math. 79 (1999), 335–344. MR 1749317, DOI 10.1007/BF02788246
- Håkan Hedenmalm, Recent progress in the function theory of the Bergman space, Holomorphic spaces (Berkeley, CA, 1995) Math. Sci. Res. Inst. Publ., vol. 33, Cambridge Univ. Press, Cambridge, 1998, pp. 35–50. MR 1630644
- Haakan Hedenmalm, Boris Korenblum, and Kehe Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics, vol. 199, Springer-Verlag, New York, 2000. MR 1758653, DOI 10.1007/978-1-4612-0497-8
Bibliographic Information
- Chunjie Wang
- Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- Address at time of publication: Department of Mathematics, Tianjin Polytechnic University, Tianjin, 300160, People’s Republic of China
- Email: wcj498@eyou.com
- Received by editor(s): October 28, 2002
- Received by editor(s) in revised form: November 12, 2002
- Published electronically: September 5, 2003
- Communicated by: Joseph A. Ball
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 853-855
- MSC (2000): Primary 30C80, 30H05
- DOI: https://doi.org/10.1090/S0002-9939-03-07137-5
- MathSciNet review: 2019965