Critical exponents of discrete groups and $L^2$âspectrum
HTML articles powered by AMS MathViewer
- by Enrico Leuzinger
- Proc. Amer. Math. Soc. 132 (2004), 919-927
- DOI: https://doi.org/10.1090/S0002-9939-03-07173-9
- Published electronically: September 12, 2003
- PDF | Request permission
Abstract:
Let $G$ be a noncompact semisimple Lie group and $\Gamma$ an arbitrary discrete, torsion-free subgroup of $G$. Let $\lambda _0(M)$ be the bottom of the spectrum of the Laplace-Beltrami operator on the locally symmetric space $M=\Gamma \backslash X$, and let $\delta (\Gamma )$ be the exponent of growth of $\Gamma$. If $G$ has rank $1$, then these quantities are related by a well-known formula due to Elstrodt, Patterson, Sullivan and Corlette. In this note we generalize that relation to the higher rank case by estimating $\lambda _0(M)$ from above and below by quadratic polynomials in $\delta (\Gamma )$. As an application we prove a rigiditiy property of lattices.References
- P. Albuquerque, Patterson-Sullivan theory in higher rank symmetric spaces, Geom. Funct. Anal. 9 (1999), no. 1, 1â28. MR 1675889, DOI 10.1007/s000390050079
- J.-P. Anker and L. Ji, Heat kernel and Green function estimates on noncompact symmetric spaces, Geom. Funct. Anal. 9 (1999), no. 6, 1035â1091. MR 1736928, DOI 10.1007/s000390050107
- Y. Benoist, PropriĂ©tĂ©s asymptotiques des groupes linĂ©aires, Geom. Funct. Anal. 7 (1997), no. 1, 1â47 (French, with English and French summaries). MR 1437472, DOI 10.1007/PL00001613
- Nicolas Bourbaki, ĂlĂ©ments de mathĂ©matique, Masson, Paris, 1981 (French). Groupes et algĂšbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. MR 647314
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Marc Burger and Alessandra Iozzi (eds.), Rigidity in dynamics and geometry, Springer-Verlag, Berlin, 2002. MR 1919392, DOI 10.1007/978-3-662-04743-9
- Kevin Corlette, Hausdorff dimensions of limit sets. I, Invent. Math. 102 (1990), no. 3, 521â541. MR 1074486, DOI 10.1007/BF01233439
- Arnaud Denjoy, Sur certaines sĂ©ries de Taylor admettant leur cercle de convergence comme coupure essentielle, C. R. Acad. Sci. Paris 209 (1939), 373â374 (French). MR 50
- Yves Guivarcâh, Produits de matrices alĂ©atoires et applications aux propriĂ©tĂ©s gĂ©omĂ©triques des sous-groupes du groupe linĂ©aire, Ergodic Theory Dynam. Systems 10 (1990), no. 3, 483â512 (French, with English summary). MR 1074315, DOI 10.1017/S0143385700005708
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- G. Knieper, On the asymptotic geometry of nonpositively curved manifolds, Geom. Funct. Anal. 7 (1997), no. 4, 755â782. MR 1465601, DOI 10.1007/s000390050025
- Ă. B. Vinberg and V. G. Kac, Quasi-homogeneous cones, Mat. Zametki 1 (1967), 347â354 (Russian). MR 208470
- E. Leuzinger, Kazhdanâs property (T), $L^2$-spectrum and isoperimetric inequalities for locally symmetric spaces, Comment. Math. Helv. 78 (2003), 116â133.
- Alexander Lubotzky, Shahar Mozes, and M. S. Raghunathan, The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Ătudes Sci. Publ. Math. 91 (2000), 5â53 (2001). MR 1828742, DOI 10.1007/BF02698740
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- G. A. Margulis and G. A. SoÄfer, Maximal subgroups of infinite index in finitely generated linear groups, J. Algebra 69 (1981), no. 1, 1â23. MR 613853, DOI 10.1016/0021-8693(81)90123-X
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
- S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), no. 3-4, 241â273. MR 450547, DOI 10.1007/BF02392046
- J.-F. Quint, Mesures de Patterson-Sullivan en rang supĂ©rieur, Geom. Funct. Anal. 12 (2002), 776â809.
- Jean-François Quint, Divergence exponentielle des sous-groupes discrets en rang supĂ©rieur, Comment. Math. Helv. 77 (2002), no. 3, 563â608 (French, with French summary). MR 1933790, DOI 10.1007/s00014-002-8352-0
- Robert S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Functional Analysis 52 (1983), no. 1, 48â79. MR 705991, DOI 10.1016/0022-1236(83)90090-3
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Ătudes Sci. Publ. Math. 50 (1979), 171â202. MR 556586, DOI 10.1007/BF02684773
- Dennis Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987), no. 3, 327â351. MR 882827
- W. P. Thurston, The Geometry and Topology of 3-Manifolds, Princeton Lecture Notes, 1978.
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, BirkhÀuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- Enrico Leuzinger
- Affiliation: Math. Institut II, UniversitÀt Karlsruhe, D-76128 Karlsruhe, Germany
- Email: Enrico.Leuzinger@math.uni-karlsruhe.de
- Received by editor(s): November 9, 2002
- Published electronically: September 12, 2003
- Communicated by: Rebecca A. Herb
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 919-927
- MSC (2000): Primary 22E40, 53C20, 53C35
- DOI: https://doi.org/10.1090/S0002-9939-03-07173-9
- MathSciNet review: 2019974