THE SHARP LOWER BOUND
FOR THE FIRST POSITIVE EIGENVALUE
OF A SUB-LAPLACIAN
ON A PSEUDO-HERMITIAN MANIFOLD

SONG-YING LI AND HING-SUN LUK

(Communicated by Mei-Chi Shaw)

Abstract. This paper studies, using the Bochner technique, a sharp lower bound of the first eigenvalue of a subelliptic Laplace operator on a strongly pseudoconvex CR manifold in terms of its pseudo-Hermitian geometry. For dimensions greater than or equal to 7, the lower bound under a condition on the Ricci curvature and the torsion was obtained by Greenleaf. We give a proof for all dimensions greater than or equal to 5. For dimension 3, the sharp lower bound is proved under a condition which also involves a distinguished covariant derivative of the torsion.

1. Introduction and main results

Let M be a $(2n+1)$-dimensional strongly pseudoconvex CR manifold and $H(M)$ the structure bundle, where $H(M)$ is a subbundle of the complexified tangent bundle $T_{\mathbb{C}}(M)$ of which each fiber is an n-dimensional complex vector space. Let θ be a real nonvanishing one-form on M that annihilates $H(M) \oplus \overline{H(M)}$. Then, (M, θ) is a strongly pseudoconvex pseudo-Hermitian manifold in the sense of Webster [9]. Locally, one can choose n complex one-forms θ^α, so that $(\theta, \theta^\alpha, \overline{\theta^\alpha})$ form a basis of complex covectors and

$$d\theta = i \theta^\alpha \wedge \overline{\theta^\beta}, \quad \theta^\alpha = \overline{\theta^\alpha}.$$

The local coframe $(\theta, \theta^\alpha, \overline{\theta^\alpha})$ is uniquely determined up to

$$\theta = \theta', \quad \theta^\alpha = \delta^\beta_\alpha U^\alpha_\beta, \quad \overline{\theta^\alpha} = \delta^\beta_\alpha U^\alpha_\beta$$

where

$$U^\alpha_\beta U^\alpha_\gamma = \delta^\gamma_\beta, \quad U^\alpha_\beta = \overline{U^{\alpha}_\beta}.$$

If we compare the dual frame

$$X_0 = \overline{X}_0, \quad X_\alpha = \overline{X}_\alpha$$

1. Received by the editors October 28, 2002.
2. 2000 Mathematics Subject Classification. Primary 32V05, 32V20; Secondary 53C56.
3. Key words and phrases. Strongly pseudoconvex CR manifold, pseudo-Hermitian geometry, sub-Laplacian, eigenvalues.
to \((\theta, \theta^\alpha, \theta^\beta)\), then the transformation (1.2) gives

\[
X_0' = X_0, \quad X'_\alpha = U^\beta_\alpha X_\beta, \quad X'_\beta = U^\alpha_\beta X_\alpha
\]

which singles out a unique transversal \(X_0\) to \(H(M) \oplus \overline{H(M)}\). Furthermore,

\[
d\theta^\alpha = \theta^\beta \wedge w^\alpha_\beta + \theta \wedge \tau^\alpha
\]

where \(w^\alpha_\beta\) are connection 1-forms that are skew-Hermitian:

\[
w^\alpha_\beta = -w^\beta_\alpha
\]

and the \(\tau^\alpha\) are torsion 1-forms of type \((0,1)\):

\[
\tau^\alpha = A^{\alpha\beta} \theta^\beta, \quad A^{\alpha\beta} = A^{\beta\alpha}.
\]

Moreover, if we define curvature 2-forms \(\Omega^\alpha_\beta\) by

\[
\Omega^\alpha_\beta = dw^\alpha_\beta - w^\gamma_\beta \wedge w^\alpha_\gamma - i\theta^\beta \wedge \tau^\alpha + i\tau^\beta \wedge \theta^\alpha,
\]

then

\[
\Omega^\alpha_\beta = R_{\alpha\beta\gamma\delta} \theta^\gamma \wedge \theta^\delta + \lambda_{\alpha\beta\gamma\delta} \wedge \theta,
\]

where \(\lambda_{\alpha\beta\gamma\delta}\) are 1-forms and the curvature tensor components \(R_{\alpha\beta\gamma\delta}\) satisfy

\[
R_{\alpha\beta\gamma\delta} = R_{\alpha\beta\gamma\delta} = R_{\gamma\delta\alpha\beta}.
\]

Let

\[
\Gamma^\alpha_\beta = \omega^\alpha_\beta(X_j), \quad \Gamma^\alpha_\beta = \omega^{\alpha\beta}(X_j)
\]

where \(\alpha, \beta \in I\) with \(I = \{1, \ldots, n\}\) and \(j \in \{0\} \cup I \cup \overline{I}\). Then \(R_{\alpha\beta\gamma\delta}\) can also be written as

\[
R_{\alpha\beta\gamma\delta} = X_\rho(\Gamma^\beta_\delta) - X_\rho(\Gamma^\gamma_\delta) - \Gamma^\gamma_\delta - \Gamma^\beta_\delta + \Gamma^\delta_\rho \Gamma^\alpha_\beta - \Gamma^\gamma_\delta \Gamma^\rho_\beta + i\delta^{\alpha\beta} \Gamma^\gamma_\delta + i\delta^{\rho\beta} \Gamma^\alpha_\gamma.
\]

For \(X = \sum_{\alpha=1}^n x^\alpha X_\alpha\) where \(x^\alpha\) are local functions, we let

\[
\text{Ric}(X, X) = R_{\alpha\beta} x^\alpha x^\beta, \quad R_{\alpha\beta\gamma\delta} = g^{\alpha\delta} R_{\alpha\beta\gamma\delta} = R_{\alpha\beta\gamma\delta},
\]

and

\[
\text{Tor}(X, X) = i(A_{\alpha\beta\gamma\delta} x^\alpha x^\beta - A_{\alpha\beta} x^\alpha x^\beta).
\]

Then the covariant derivatives and the sub-Laplacian of a function \(f\) on \(M\) are given by

\[
f_j = X_j f, \quad f_{\alpha\beta} = X_j f_{\alpha\gamma} - \Gamma^\gamma_\delta \gamma^\alpha_\beta f, \quad f_{\alpha\beta} = X_j f_{\alpha\gamma} - \Gamma^\gamma_\delta \gamma^\alpha_\beta f
\]

and

\[
\Delta f = 2\text{Re}(\text{tr}(\pi + D^2 f)) = \sum_{\alpha} \partial_{\alpha\gamma} f_{\alpha\gamma} + f_{\alpha\gamma}.
\]

Let \(\lambda_1\) be the first positive eigenvalue of \(\Delta\). We shall prove the following theorems.

Theorem 1.1. Let \(n \geq 2\) and let \(M\) be a \((2n + 1)\)-dimensional strongly pseudo-convex pseudo-Hermitian manifold in the sense of Webster. If

\[
\text{Ric}(X, X) + (n/2) \text{Tor}(X, X) \geq k_0 g_m(X, X)
\]

for all \(m \in M\) and \(X \in H_m(M)\), for some positive constant \(k_0\), then \(\lambda_1 \geq \frac{n k_0}{n+1}\).
Theorem 1.2. Let M be a 3-dimensional strongly pseudoconvex pseudo-Hermitian manifold in the sense of Webster. Let

$$\text{Ric}_m(X, X) + \frac{1}{2} \text{Tor}_m(X, X) - \frac{3}{k_0} B_m^2(X, X) \geq k_0 g_m(X, X),$$

for all $m \in M$, $X \in H_m(M)$, and for some positive constant k_0, where

$$B_m^2(x_1 X_1, x_1 X_1) = 2 |A_{11}|^2 |x_1|^2 - \text{Re} X_0(A_m^1 x_1^2 - 2 \text{Re} A_m^1 \Gamma_{10} x_1^2).$$

Then $\lambda_1 \geq \frac{4m}{n}$.

The above two theorems are sharp when M is the unit sphere in \mathbb{C}^{n+1}, in which case the torsion vanishes and $\lambda_1 = \frac{4m}{n+2} k_0 = n$.

Observing that $(A_m^1)^0 = X_0 A_m^1 - 2 A_m^1 \Gamma_0^T = X_0 A_m^1 + 2 A_m^1 \Gamma_1^0$, we remark that while the pseudo-Hermitian case differs from the Riemannian case in that torsion enters into the picture in addition to the Ricci curvature, the 3-dimensional pseudo-Hermitian case differs from the higher-dimensional cases in that the first covariant derivative of the torsion along the distinguished transversal X_0 also plays a role in Theorem 1.2.

2. Proof of Theorem 1.1

We shall start to prove Theorem 1.1.

Proof. Let $(X_0, X_\alpha, X_\bar{\alpha})$ be a local frame given by (1.4). Let X_α^* be the adjoint of X_α with respect to dv. Then

$$X_\alpha^* = -X_\alpha + (\sum_\beta \Gamma_{\beta\bar{\alpha}}) \text{ and } \tilde{\Delta} = -\sum_\alpha (X_\alpha^* X_\alpha + X_\bar{\alpha} X_\bar{\alpha}).$$

Let $\tilde{\nabla} f = \sum_\alpha f_\alpha X_\alpha \in \Gamma(H(M)) \text{ and } \tilde{d} f = f_\alpha \theta^\alpha + f_{\bar{\alpha}} \bar{\theta}^{\bar{\alpha}}$. We recall the following formulae proved in [3].

Bochner formula:

$$\frac{1}{2} \Delta |\tilde{\nabla} f|^2 = \| \pi_+ D^2 f \|^2 + \| \pi_- D^2 f \|^2 + \text{Re} (\tilde{\nabla} f, \tilde{\nabla} (\tilde{\Delta} f)) + (\text{Ric} + (n-2)/2 \text{Tor}) (\tilde{\nabla} f, \tilde{\nabla} f) + i(D^2 f)(X_0, (\tilde{d} f)^*)^*,$$

(2.3) \[\int_M i(D^2 f)(X_0, (\tilde{d} f)^*)^* dv = \int_M \|\pi_+ D^2 f\|^2 - \|\pi_- D^2 f\|^2 - \text{Ric}(\tilde{\nabla} f, \tilde{\nabla} f) dv \]

and

(2.4) \[\int_M i(D^2 f)(X_0, (\tilde{d} f)^*)^* dv = \int_M -\frac{4}{n} |\text{tr}(\pi_+ D^2 f)|^2 + \frac{1}{n} (\tilde{\Delta} f)^2 + \text{Tor}(\tilde{\nabla} f, \tilde{\nabla} f) dv, \]

where $\|\pi_+ D^2 f\|^2, \|\pi_- D^2 f\|^2, \text{tr}(\pi_+ D^2 f)$ and $D^2 f(X_0, (\tilde{d} f)^*)^*$ are locally given by $\sum f_{\beta\bar{\alpha}} f_{\bar{\beta}\alpha}, \sum f_{\beta\alpha} f_{\bar{\beta}\bar{\alpha}}, \sum f_{\beta\bar{\alpha}}$ and $\sum f_{\beta\alpha} f_{\alpha 0} - f_{\alpha 0}$, respectively.
If \(f \) is a non-constant real-valued function so that \(\Delta f = -\lambda_1 f \), then \(\int_M f dv = 0 \) and

\[
(2.5) \quad \lambda_1 \int_M |f|^2 dv = - \int_M (f, \Delta f) dv = 2 \int_M |\nabla f|^2 dv.
\]

Consequently, for any \(c \in [0, 1] \), \((1 - c) \times (2.3) + c \times (2.4) \) gives

\[
\int_M i(D^2f)(X_0, (\bar{d}f)^*) dv
\]

\[
(2.6) = \int_M \left[\frac{2(1-c)}{n} \|\pi_+ D^2 f\|^2 - \frac{4c}{n} (\text{tr}(\pi_+ D^2 f))^2 - \frac{2(1-c)}{n} \|\pi_- D^2 f\|^2 + \frac{2\lambda_1 c}{n} |\nabla f|^2 - \frac{2(1-c)}{n} \text{Ric}(\nabla f, \nabla f) + c \text{Tor}(\nabla f, \nabla f) \right] dv.
\]

By the Cauchy-Schwarz inequality,

\[
(2.7) \quad \|\pi_+ D^2 f\|^2 \geq \frac{1}{n} |\text{tr}(\pi_+ D^2 f)|^2.
\]

Then

\[
0 = \int_M \frac{1}{2} \Delta |\nabla f|^2 dv
\]

\[
= \int_M \left[\|\pi_+ D^2 f\|^2 + \|\pi_- D^2 f\|^2 - \lambda_1 \text{Re}(\nabla f, \nabla f) + (\text{Ric} + \frac{(n-2)}{2} \text{Tor})(\nabla f, \nabla f) + \frac{2(1-c)}{n} \|\pi_+ D^2 f\|^2 - \frac{4c}{n} (\text{tr}(\pi_+ D^2 f))^2 - \frac{2(1-c)}{n} \|\pi_- D^2 f\|^2 + \frac{2\lambda_1 c}{n} |\nabla f|^2 - \frac{2(1-c)}{n} \text{Ric}(\nabla f, \nabla f) + c \text{Tor}(\nabla f, \nabla f) \right] dv
\]

\[
\geq \int_M \left[\left(\frac{1}{n} + \frac{2(1-c)}{n^2} - \frac{4c}{n} \right) |\text{tr}(\pi_+ D^2 f)|^2 + \left(1 - \frac{2(1-c)}{n} \right) \|\pi_- D^2 f\|^2 - \lambda_1 (1 - \frac{2c}{n}) |\nabla f|^2 + ((1 - \frac{2(1-c)}{n}) \text{Ric} + \frac{(n-2+2c)}{2} \text{Tor})(\nabla f, \nabla f) \right] dv.
\]

To get rid of the \(|\text{tr}(\pi_+ D^2 f)|^2 \) term, we solve \(\frac{1}{n} + \frac{2(1-c)}{n^2} - \frac{4c}{n} = 0 \) for \(c \) and let \(c = \frac{n+2}{2(n+2n)} \). For this choice of \(c \), the above inequality becomes

\[
0 \geq \int_M \left[\frac{2(n-1)}{1+2n} \|\pi_- D^2 f\|^2 - \frac{(n+1)\lambda_1}{n} |\nabla f|^2 + (\text{Ric} + \frac{n}{2} \text{Tor})(\nabla f, \nabla f) \right] dv.
\]

By the hypothesis, \((\text{Ric} + \frac{n}{2} \text{Tor})(\nabla f, \nabla f) \geq k_0 |\nabla f|^2 \). Hence

\[
0 \geq \int_M \left[\frac{2(n-1)}{2n+1} \|\pi_- D^2 f\|^2 + \left(k_0 - \frac{n+1}{n} \lambda_1 \right) |\nabla f|^2 \right] dv,
\]

which implies that for \(n \geq 2 \), \(\frac{n+1}{n} \lambda_1 \geq k_0 \). Therefore, we have proved Theorem 1.1. \(\square \)
3. Proof of Theorem 1.2

For \(n = 1 \), we need more on the pseudo-Hermitian geometry of \(M \). First we compute the curvature 2-form \(\Omega_1^1 \) in (1.9) to get \(\lambda_1^1 \) in (1.10) explicitly. The result is

\[
(3.1) \quad \Omega_1^1 = d\omega_1^1 = R_{1\Gamma_1\Gamma} \theta_1^1 \wedge \theta^\Gamma + W_{1\Gamma_1} \theta_1^1 \wedge \theta - W_{1\Gamma_1} \theta^\Gamma \wedge \theta
\]

where

\[
R_{1\Gamma_1\Gamma} = X_1 \Gamma_{11}^1 - X_0 \Gamma_{11}^1 + \Gamma_{11}^1 \Gamma_{11}^1 - \Gamma_{11}^1 \Gamma_{11}^1 + i \Gamma_{11}^1,
\]

\[
W_{1\Gamma_1} = X_1 \Gamma_{10}^1 - X_0 \Gamma_{11}^1 + \Gamma_{11}^1 \Gamma_{10}^1 - A_{11} \Gamma_{11}^1
\]

and \(W_{1\Gamma_1} = W_{1\Gamma_1} \). There is another curvature 2-form \(\Omega^1 \) defined by

\[
(3.2) \quad \Omega^1 = d\tau^1 - \tau^1 \wedge \omega^1.
\]

Explicit computation gives

\[
(3.3) \quad \Omega^1 = (X_1 A_{1\Gamma} + 2 A_{1\Gamma} \Gamma_{11}^1) \theta_1^1 \wedge \theta^\Gamma - |A_{1\Gamma}|^2 \theta_1^1 \wedge \theta + (-X_0 A_{1\Gamma} - 2 A_{1\Gamma} \Gamma_{10}^1) \theta^\Gamma \wedge \theta.
\]

It was shown in [9] that the coefficient of \(\theta_1^1 \wedge \theta^\Gamma \) in \(\Omega^1 \) is equal to \(W_{1\Gamma_1} \) in \(\Omega^1 \). Equating the two expressions of \(W_{1\Gamma_1} \), we get

\[
(3.4) \quad X_1 A_{1\Gamma} = X_0 \Gamma_{11}^1 - X_0 \Gamma_{10}^1 + \Gamma_{11}^1 \Gamma_{10}^1 - A_{1\Gamma} \Gamma_{11}^1.
\]

With this extra information, we will be able to prove the following lemma. For convenience, we shall henceforth write \(A = A_{1\Gamma} \).

Lemma 3.1. Let \(\tilde{\Delta} f = -\lambda_1 f \) and \(f_0 = X_0 f \). Then

\[
(3.5) \quad \frac{1}{2} \int_M \tilde{\Delta} f_0^2 \, dv = -\lambda_1 \int_M f_0^2 \, dv + 2 \int_M |X_1 f_0|^2 \, dv - 4 \text{Re} \int_M A f_1 X_1 f_0 \, dv
\]

(both sides being zero).

Proof.

\[
\frac{1}{2} \tilde{\Delta} (f_0^2) = \frac{1}{2} \left((f_0^2)_\Gamma + (f_0^2)_\gamma \right)
\]

\[
= \frac{1}{2} \left[X_\Gamma (f_0^2)_1 + X_1 (f_0^2)_\Gamma + X_1 (f_0^2)_\Gamma - X_0 (f_0^2)_\gamma \right]
\]

\[
= X_\Gamma (f_0 X_1 f_0) - \Gamma_{11}^1 (f_0 X_1 f_0) - \Gamma_{11}^1 (f_0 X_1 f_0) - \Gamma_{11}^1 (f_0 X_1 f_0)
\]

\[
= 2 |X_1 f_0|^2 + 2 f_0 \text{Re} (X_\Gamma X_1 f_0) - 2 f_0 \text{Re} (\Gamma_{11}^1 X_1 f_0).
\]
Using the Lie bracket \([X_0, X_1] = \Gamma^1_{10} X_1 - \overline{\mathcal{A}} X_{T_f}\) (1.15) and (1.7), we get

\[
X_{T_f} X_1 f_0 = X_T X_0 f_0 + X_T [X_1, X_0] f \\
= X_0 X_T X_1 f + [X_T, X_0] X_1 f + X_T [X_1, X_0] f \\
= X_0 (f_1 + \Gamma^1_{1T} f_1) + (AX_1 - \Gamma^1_{10} X_T) X_1 f + X_T (\overline{\mathcal{A}} X_T - \Gamma^1_{10} X_1) f \\
= X_0 f_1 + X_0 (\Gamma^1_{1T} f_1 + \Gamma^1_{1T} X_0 f_1 + (AX_1 X_1 + \overline{\mathcal{A}} X_T X_T) f \\
\quad - \Gamma^1_{10} X_T X_1 f + X_T (\overline{\mathcal{A}}) X_T f - X_T (\Gamma^1_{10}) X_1 f - \Gamma^1_{10} X_T X_1 f \\
= X_0 f_1 + X_0 (\Gamma^1_{1T} f_1 + \Gamma^1_{1T} X_1 f_0 + \Gamma^1_{1T} (\overline{\mathcal{A}} X_T + \Gamma^1_{10} X_1) f \\
\quad + (AX_1 X_1 + \overline{\mathcal{A}} X_T X_T) f + X_T (\overline{\mathcal{A}}) X_T f - X_T (\Gamma^1_{10}) X_1 f \\
= X_0 f_1 + [X_0 (\Gamma^1_{1T}) - X_T (\Gamma^1_{10}) + \Gamma^1_{1T} \Gamma^1_{10}] f_1 + (X_T (\overline{\mathcal{A}}) - \Gamma^1_{1T} \overline{\mathcal{A}}) f \\
\quad + (AX_1 X_1 + \overline{\mathcal{A}} X_T X_T) f + \Gamma^1_{1T} X_1 f_0.
\]

Thus,

\[
2 \text{Re} X_T X_1 f_0 = X_0 (f_1 + f_{T_{1T}}) + 2 \text{Re} [X_0 (\Gamma^1_{1T}) - X_T (\Gamma^1_{10}) + \Gamma^1_{1T} \Gamma^1_{10} + X_1 A - A \Gamma^1_{1T}] f_1 \\
\quad + 2(AX_1 X_1 + \overline{\mathcal{A}} X_T X_T) f + 2 \text{Re} \Gamma^1_{1T} X_1 f_0.
\]

Therefore,

\[
\frac{1}{2} \Delta f_0^2 = 2 |X_1 f_0|^2 - 2 f_0 \text{Re} \left(\Gamma^1_{1T} X_1 f_0 \right) \\
\quad + f_0 \left[X_0 (f_1 + f_{T_{1T}}) + 2 \text{Re} [X_0 (\Gamma^1_{1T}) - X_T (\Gamma^1_{10}) \\
\quad + \Gamma^1_{1T} \Gamma^1_{10} + X_1 A - A \Gamma^1_{1T}] f_1 \\
\quad + 2(AX_1 X_1 + \overline{\mathcal{A}} X_T X_T) f + 2 \text{Re} \Gamma^1_{1T} X_1 f_0 \right] \\
= 2 |X_1 f_0|^2 + 2 f_0 (AX_1 X_1 + \overline{\mathcal{A}} X_T X_T) f \\
\quad + f_0 X_0 \Delta f + 2 f_0 \text{Re} [X_0 (\Gamma^1_{1T}) - X_T (\Gamma^1_{10}) + \Gamma^1_{1T} \Gamma^1_{10} + X_1 A - A \Gamma^1_{1T}] f_1.
\]

Using \(X^* = -X + \Gamma^1_{1T}\), we get

\[
2 \int_M f_0 AX_1 X_1 f_1 dv = 2 \int_M X^* (f_0 A) f_1 dv \\
= -2 \int_M X_1 (f_0 A) f_1 dv + 2 \int_M \Gamma^1_{1T} f_0 A dv \\
= -2 \int_M X_1 (A) f_1 f_0 dv - 2 \int_M A f_1 X_1 f_0 dv + 2 \int_M \Gamma^1_{1T} A f_0 f_1 dv.
\]
Then, by (3.4) with $A = A_{\mathcal{T}}$,

\[
2 \int_M f_0 AX_1 X_1 f \, dv + \int_M \left(\Gamma_{\mathcal{T}}^1 \Gamma_{\mathcal{T}}^1 - X_{\mathcal{T}} \Gamma_{\mathcal{T}}^1 + X_0 \Gamma_{\mathcal{T}}^1 + X_1 A - A \Gamma_{\mathcal{T}}^1 \right) f_1 f_0 \, dv \\
= -2 \int_M A f_1 X_1 f_0 \, dv + \int_M \left(\Gamma_{\mathcal{T}}^1 \Gamma_{\mathcal{T}}^1 - X_{\mathcal{T}} \Gamma_{\mathcal{T}}^1 + X_0 \Gamma_{\mathcal{T}}^1 \right) \\
\quad + X_0 (\Gamma_{\mathcal{T}}^1) - X_1 A + A \Gamma_{\mathcal{T}}^1 \right) f_1 f_0 \, dv \\
= -2 \int_M A f_1 X_1 f_0 \, dv.
\]

Therefore,

\[
\int_M \frac{1}{2} \Delta f_0^2 \, dv = 2 \int_M |X_1 f_0|^2 \, dv - \lambda_1 \int_M (f_0)^2 \, dv - 4 \text{Re} \int_M A f_1 X_1 f_0 \, dv
\]

and the proof of the lemma is complete. \hfill \Box

Notice that

\[
i(f_{\mathcal{T}} f_{10} - f_{1} f_{70}) \\
= if_{\mathcal{T}}(X_0 f_{1} - \Gamma_{10}^1 f_{1}) - if_{1}(X_0 f_{\mathcal{T}} - \Gamma_{70}^1 f_{\mathcal{T}}) \\
= if_{\mathcal{T}}(X_1 f_0 + (\Gamma_{10}^1 f_{1} - \overline{A} f_{\mathcal{T}}) - \Gamma_{10}^1 f_{1}) \\
\quad - if_{1}(X_{\mathcal{T}} f_0 + (\Gamma_{70}^1 f_{\mathcal{T}} - A f_{1}) - \Gamma_{70}^1 f_{\mathcal{T}}) \\
= i(f_{\mathcal{T}} X_1 f_0 - f_1 X_{\mathcal{T}} f_0) + i(A f_1^2 - \overline{A} f_{\mathcal{T}}^2) \\
= i(f_{\mathcal{T}} X_1 f_0 - f_1 X_{\mathcal{T}} f_0) + \text{Tor}(\nabla f, \nabla f),
\]

and

\[
X_1^* = -X_{\mathcal{T}} + \Gamma_{1}^1_{\mathcal{T}} \quad \text{and} \quad [X_1, X_{\mathcal{T}}] = -i X_0 - \Gamma_{1}^1_{\mathcal{T}} X_1 + \Gamma_{1}^1_{\mathcal{T}} X_{\mathcal{T}}.
\]

By (3.7)

\[
\text{Im} \int_M f_{\mathcal{T}} X_1 f_0 \, dv = \text{Im} \int_M (-X_1 X_{\mathcal{T}} f + \Gamma_{1}^1_{\mathcal{T}} f_{\mathcal{T}}) f_0 \, dv \\
= \text{Im} \int_M i \frac{1}{2} X_0 f_0 \, dv \\
= \frac{1}{2} \int_M f_0^2 \, dv.
\]

Hence, for $n = 1$, by (2.2), (3.6), (3.8) and the equation

\[
\int_M |f_{\mathcal{T}}|^2 \, dv = \int_M (\text{Re} f_{\mathcal{T}})^2 + (\text{Im} f_{\mathcal{T}})^2 \, dv \\
= \int_M \frac{1}{4} |\Delta f|^2 + \frac{1}{4} |f_0|^2 \, dv \\
= \int_M \frac{\lambda_1}{2} |\nabla f|^2 + \frac{1}{4} |f_0|^2 \, dv,
\]
we have
\[0 = \frac{1}{2} \int_M \bar{\Delta} |\bar{\nabla} f|^2 dv \]
\[= \int_M \left(\frac{\lambda_1}{2} |\bar{\nabla} f|^2 + \frac{1}{4}|f_0|^2 \right) + |f_{11}|^2 - \lambda_1 |\bar{\nabla} f|^2 \]
\[+ \text{Ric}(\bar{\nabla} f, \bar{\nabla} f) - \frac{1}{2} \text{Tor}(\bar{\nabla} f, \bar{\nabla} f) + i(f_{10}f_{10} - f_{1}f_{10}) dv \]
\[= \int_M \left(\frac{\lambda_1}{2} |\bar{\nabla} f|^2 + \frac{1}{4}|f_0|^2 \right) + |f_{11}|^2 - \lambda_1 |\bar{\nabla} f|^2 \]
\[+ \left(\text{Ric} + \frac{1}{2} \text{Tor} \right)(\bar{\nabla} f, \bar{\nabla} f) + i(f_{10}f_{10} - f_{1}f_{10}) dv \]
\[= \int_M \left(-\frac{1}{2}\lambda_1 |\bar{\nabla} f|^2 + \frac{1}{4}|f_0|^2 + |f_{11}|^2 \right) \]
\[+ \left(\text{Ric} + \frac{1}{2} \text{Tor} \right)(\bar{\nabla} f, \bar{\nabla} f) - 2\text{Im}(f_{10}f_{10}) dv \]
\[= \int_M \left(-\frac{1}{2}\lambda_1 |\bar{\nabla} f|^2 + |f_{11}|^2 + \left(\text{Ric} + \frac{1}{2} \text{Tor} \right)(\bar{\nabla} f, \bar{\nabla} f) - \frac{3}{2} \text{Im}(f_{10}f_{10}) \right) dv. \]

By Lemma 3.1, where \(\int_M \bar{\Delta} f_0^2 dv = 0 \), and (3.8), we have
\[(3.9) \quad 2 \int_M |X_1 f_0|^2 - 4\text{Re} \int_M A f_1 X_1 f_0 dv = \lambda_1 \int_M f_0^2 dv = 2\lambda_1 \text{Im} \int_M f_{10} f_1 f_0 dv. \]
Thus,
\[(3.10) \quad \int_M |X_1 f_0|^2 = 2\text{Re} \int_M A f_1 X_1 f_0 dv + \lambda_1 \text{Im} \int_M f_{10} f_1 f_0 dv \]
\[\leq 2\text{Re} \int_M A f_1 f_0 f_0 dv + \lambda_1 \left(\int_M |f_{10}|^2 dv \right)^{1/2} \left(\int_M |X_1 f_0|^2 dv \right)^{1/2} \]
\[\leq 2\text{Re} \int_M A f_1 X_1 f_0 dv + \frac{\lambda_1}{2} \int_M |f_{10}|^2 dv + \frac{1}{2} \int_M |X_1 f_0|^2 dv. \]
Since
\[(3.11) \quad \int_M X_0(A f_1^2) dv = 0, \]
we have
\[(3.12) \quad \int_M A f_1 X_0 f_1 dv = -\frac{1}{2} \int_M X_0(A f_1^2) dv. \]
Thus,
\[\text{Re} \int_M A f_1 X_1 f_0 dv \]
\[= \text{Re} \int_M A f_1 (X_0 f_1 + \bar{A} X_1 f - \Gamma^1_{10} f_1) dv \]
\[= \text{Re} \int_M (|A|^2 |f_1|^2 - \frac{1}{2} X_0(A f_1^2) - 2\Gamma^1_{10} f_1^2) dv \]
\[= \int_M \frac{1}{2} B^2 (\bar{\nabla} f, \bar{\nabla} f) dv. \]
If there is no confusion, we shall simply write

\[(3.14)\]

\[B^2(\tilde{\nabla} f, \tilde{\nabla} f) = B^2 |f_1|^2.\]

(3.10)–(3.14) imply that

\[(3.15)\]

\[
\int_M |X_1 f_0|^2 dv \leq 4 \text{Re} \int_M A f_1 X_1 f_0 dv + \lambda_1^2 \int_M |f_1|^2 dv
\]

\[
\leq \int_M (2B^2 + \lambda_1^2) |f_1|^2 dv.
\]

Therefore,

\[(3.16)\]

\[
- \frac{3}{2} \text{Im} \int_M f_1 X_1 f_0 dv \\
\geq \frac{3}{2} \left(\int_M |f_1|^2 dv \right)^{1/2} \left(\int_M |X_1 f_0|^2 dv \right)^{1/2}
\]

\[
\geq - \frac{3b}{4} \int_M |f_1|^2 dv - \frac{3}{4b} \int_M |X_1 f_0|^2 dv
\]

\[
\geq - \frac{3b}{4} \int_M |f_1|^2 dv - \frac{3}{4b} \int_M (2B^2 + \lambda_1^2) |f_1|^2 dv.
\]

For simplicity, we will use the notation

\[(3.17)\]

\[\text{Ric}(\tilde{\nabla} f, \tilde{\nabla} f) + \frac{1}{2} \text{Tor}(\tilde{\nabla} f, \tilde{\nabla} f) = k |f_1|^2.\]

Therefore,

\[
0 \geq - \frac{1}{2} \lambda_1 \int_M |f_1|^2 dv + \int_M k |f_1|^2 dv
\]

\[
- \frac{3b}{4} \int_M |f_1|^2 dv - \frac{3}{4b} \int_M (2B^2 + \lambda_1^2) |f_1|^2 dv
\]

\[
= - \lambda_1 \int_M \left(\frac{1}{2} + \frac{3\lambda_1}{4b} \right) |f_1|^2 dv + \int_M \left(k - \frac{3}{4b} - \frac{3B^2}{2b} \right) |f_1|^2 dv.
\]

Let \(b = k_0/2\). Then by (1.17) and (1.18),

\[
k - \frac{3B^2}{2b} = k - \frac{3B^2}{k_0} \geq k_0.
\]

Thus,

\[
\lambda_1 \geq \frac{(k_0 - \frac{3b}{2})}{\frac{1}{2} + \frac{3\lambda_1}{4b}} = \frac{(4k_0 - 3b)b}{2b + 3\lambda_1} = \frac{5k_0^2}{4(k_0 + 3\lambda_1)}.
\]

This holds if and only if \(12\lambda_1^2 + 4k_0 \lambda_1 \geq 5k_0^2\), i.e., \((2\lambda_1 - k_0)(6\lambda_1 + 5k_0) \geq 0\). Since \(\lambda_1 > 0\), we have \(6\lambda_1 + 5k_0 > 0\). Hence \(\lambda_1 \geq \frac{k_0}{2}\). Therefore, the proof of Theorem 1.2 is complete. \(\square\)

Finally, we remark that for \(n = 1\), (1.2) and (1.5) reduce to \(\theta = \theta', \theta^1 = e^{\alpha_0} \theta_0^1\) and \(X_0' = X_0, X_1' = e^{\alpha_0} X_1\) where \(\alpha \in \mathbb{R}\). Under these transformations, it can be checked that the quantities considered in Theorem 1.2 also have intrinsic meaning even though they are expressed locally.
ACKNOWLEDGEMENT

The second author is partially supported by RGC Hong Kong. Part of this research was done while the first author visited the Mathematics Department at the Chinese University of Hong Kong; he thanks them for their hospitality.

REFERENCES

Department of Mathematics, University of California, Irvine, California 92697–3875
E-mail address: sli@math.uci.edu

Department of Mathematics, Lady Shaw Building, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
E-mail address: hsluk@math.cuhk.edu.hk