A simple proof that super-reflexive spaces are $K$-spaces
HTML articles powered by AMS MathViewer
- by Félix Cabello Sánchez
- Proc. Amer. Math. Soc. 132 (2004), 697-698
- DOI: https://doi.org/10.1090/S0002-9939-03-07180-6
- Published electronically: September 29, 2003
- PDF | Request permission
Abstract:
We demonstrate the title.References
- N. J. Kalton, The three space problem for locally bounded $F$-spaces, Compositio Math. 37 (1978), no. 3, 243–276. MR 511744
- Nigel J. Kalton, Nonlinear commutators in interpolation theory, Mem. Amer. Math. Soc. 73 (1988), no. 385, iv+85. MR 938889, DOI 10.1090/memo/0385
- N. J. Kalton, N. T. Peck, and James W. Roberts, An $F$-space sampler, London Mathematical Society Lecture Note Series, vol. 89, Cambridge University Press, Cambridge, 1984. MR 808777, DOI 10.1017/CBO9780511662447
- N. J. Kalton and James W. Roberts, Uniformly exhaustive submeasures and nearly additive set functions, Trans. Amer. Math. Soc. 278 (1983), no. 2, 803–816. MR 701524, DOI 10.1090/S0002-9947-1983-0701524-4
- M. Ribe, Examples for the nonlocally convex three space problem, Proc. Amer. Math. Soc. 73 (1979), no. 3, 351–355. MR 518518, DOI 10.1090/S0002-9939-1979-0518518-9
- James W. Roberts, A nonlocally convex $F$-space with the Hahn-Banach approximation property, Banach spaces of analytic functions (Proc. Pelczynski Conf., Kent State Univ., Kent, Ohio, 1976) Lecture Notes in Math., Vol. 604, Springer, Berlin, 1977, pp. 76–81. MR 0625305
- Brailey Sims, “Ultra”-techniques in Banach space theory, Queen’s Papers in Pure and Applied Mathematics, vol. 60, Queen’s University, Kingston, ON, 1982. MR 778727
Bibliographic Information
- Félix Cabello Sánchez
- Affiliation: Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas, 06071 Badajoz, Spain
- Email: fcabello@unex.es
- Received by editor(s): June 20, 2001
- Published electronically: September 29, 2003
- Additional Notes: Supported in part by DGICYT project BMF 2001—083.
- Communicated by: Jonathan M. Borwein
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 697-698
- MSC (2000): Primary 46B03, 46B08, 39B82
- DOI: https://doi.org/10.1090/S0002-9939-03-07180-6
- MathSciNet review: 2019945