Hardy inequalities related to Grushin type operators
HTML articles powered by AMS MathViewer
- by Lorenzo D’Ambrosio
- Proc. Amer. Math. Soc. 132 (2004), 725-734
- DOI: https://doi.org/10.1090/S0002-9939-03-07232-0
- Published electronically: October 9, 2003
- PDF | Request permission
Abstract:
We prove some Hardy type inequalities related to the Grushin type operator $\Delta _x+|x|^{2\gamma }\Delta _y$.References
- Walter Allegretto and Yin Xi Huang, A Picone’s identity for the $p$-Laplacian and applications, Nonlinear Anal. 32 (1998), no. 7, 819–830. MR 1618334, DOI 10.1016/S0362-546X(97)00530-0
- Pierre Baras and Jerome A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), no. 1, 121–139. MR 742415, DOI 10.1090/S0002-9947-1984-0742415-3
- Haïm Brezis and Xavier Cabré, Some simple nonlinear PDE’s without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 2, 223–262 (English, with Italian summary). MR 1638143
- Haim Brezis and Juan Luis Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 443–469. MR 1605678
- L. D’Ambrosio, Some Hardy Inequalities on the Heisenberg Group, J. Differential Equations, to appear.
- L. D’Ambrosio and S. Lucente, Nonlinear Liouville Theorems for Grushin and Tricomi Operators, J. Differential Equations 193 (2003), no. 2, 511–541.
- E. B. Davies, The Hardy constant, Quart. J. Math. Oxford Ser. (2) 46 (1995), no. 184, 417–431. MR 1366614, DOI 10.1093/qmath/46.4.417
- E. B. Davies, A review of Hardy inequalities, The Maz′ya anniversary collection, Vol. 2 (Rostock, 1998) Oper. Theory Adv. Appl., vol. 110, Birkhäuser, Basel, 1999, pp. 55–67. MR 1747888
- E. B. Davies and A. M. Hinz, Explicit constants for Rellich inequalities in $L_p(\Omega )$, Math. Z. 227 (1998), no. 3, 511–523. MR 1612685, DOI 10.1007/PL00004389
- Bruno Franchi, Cristian E. Gutiérrez, and Richard L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), no. 3-4, 523–604. MR 1265808, DOI 10.1080/03605309408821025
- J. P. García Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998), no. 2, 441–476. MR 1616905, DOI 10.1006/jdeq.1997.3375
- N. Garofalo and E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 2, 313–356 (English, with French summary). MR 1070830, DOI 10.5802/aif.1215
- Jerome A. Goldstein and Qi S. Zhang, On a degenerate heat equation with a singular potential, J. Funct. Anal. 186 (2001), no. 2, 342–359. MR 1864826, DOI 10.1006/jfan.2001.3792
- V. V. Grushin, On a Class of Hypoelliptic Operators, Math. USSR Sbornik 12 (1970), 458–476.
- G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press, UK, 1934.
- È. Mitidieri, A simple approach to Hardy inequalities, Mat. Zametki 67 (2000), no. 4, 563–572 (Russian, with Russian summary); English transl., Math. Notes 67 (2000), no. 3-4, 479–486. MR 1769903, DOI 10.1007/BF02676404
- Pengcheng Niu, Huiqing Zhang, and Yong Wang, Hardy type and Rellich type inequalities on the Heisenberg group, Proc. Amer. Math. Soc. 129 (2001), no. 12, 3623–3630. MR 1860496, DOI 10.1090/S0002-9939-01-06011-7
- Juan Luis Vazquez and Enrike Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal. 173 (2000), no. 1, 103–153. MR 1760280, DOI 10.1006/jfan.1999.3556
Bibliographic Information
- Lorenzo D’Ambrosio
- Affiliation: SISSA-ISAS, v. Beirut, 2-4 – 34014, Trieste, Italy; Dipartimento di Matematica, via Orabona, 4 – I-70125, Bari, Italy
- MR Author ID: 688653
- ORCID: 0000-0003-0677-056X
- Email: dambros@dm.uniba.it
- Received by editor(s): October 18, 2002
- Published electronically: October 9, 2003
- Additional Notes: This research was partially supported by M.U.R.S.T. Programma Nazionale “Metodi Variazionali ed Equazioni Differenziali Nonlineari”
- Communicated by: David S. Tartakoff
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 725-734
- MSC (2000): Primary 35H10, 26D10, 46E35
- DOI: https://doi.org/10.1090/S0002-9939-03-07232-0
- MathSciNet review: 2019949