Bundles with periodic maps and mod $p$ Chern polynomial
HTML articles powered by AMS MathViewer
- by Jan Jaworowski
- Proc. Amer. Math. Soc. 132 (2004), 1223-1228
- DOI: https://doi.org/10.1090/S0002-9939-03-07168-5
- Published electronically: August 20, 2003
- PDF | Request permission
Abstract:
Suppose that $E\to B$ is a vector bundle with a linear periodic map of period $p$; the map is assumed free on the outside of the $0$-section. A polynomial $c_{E}(y)$, called a mod $p$ Chern polynomial of $E$, is defined. It is analogous to the Stiefel-Whitney polynomial defined by Dold for real vector bundles with the antipodal involution. The mod $p$ Chern polynomial can be used to measure the size of the periodic coincidence set for fibre preserving maps of the unit sphere bundle of $E$ into another vector bundle.References
- J. E. Connett, On the cohomology of fixed-point sets and coincidence-point sets, Indiana Univ. Math. J. 24 (1974/75), 627–634. MR 365553, DOI 10.1512/iumj.1975.24.24048
- Albrecht Dold, Parametrized Borsuk-Ulam theorems, Comment. Math. Helv. 63 (1988), no. 2, 275–285. MR 948782, DOI 10.1007/BF02566767
- J. Jaworowski, Fibre preserving involutions and the kernel of the derivative (preprint), Forschungsinstitut fuer Mathematik ETH Zuerich, August, 1980.
- Jan Jaworowski, Fibre preserving maps of sphere bundles into vector space bundles, Fixed point theory (Sherbrooke, Que., 1980) Lecture Notes in Math., vol. 886, Springer, Berlin-New York, 1981, pp. 154–162. MR 643004
- Jan Jaworowski, The index of free circle actions in lens spaces, Proceedings of the Janos Bolyai Mathematical Society 8th International Topology Conference (Gyula, 1998), 2002, pp. 125–129. MR 1921653, DOI 10.1016/S0166-8641(01)00175-4
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554, DOI 10.1515/9781400881826
- Robert M. Switzer, Algebraic topology—homotopy and homology, Die Grundlehren der mathematischen Wissenschaften, Band 212, Springer-Verlag, New York-Heidelberg, 1975. MR 0385836, DOI 10.1007/978-3-642-61923-6
Bibliographic Information
- Jan Jaworowski
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405-5701
- Email: jaworows@indiana.edu
- Received by editor(s): August 7, 2002
- Received by editor(s) in revised form: November 22, 2002
- Published electronically: August 20, 2003
- Communicated by: Paul Goerss
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1223-1228
- MSC (2000): Primary 55R91, 55R40; Secondary 55M20
- DOI: https://doi.org/10.1090/S0002-9939-03-07168-5
- MathSciNet review: 2045442