A quasi-Hopf algebra freeness theorem
HTML articles powered by AMS MathViewer
- by Peter Schauenburg
- Proc. Amer. Math. Soc. 132 (2004), 965-972
- DOI: https://doi.org/10.1090/S0002-9939-03-07181-8
- Published electronically: July 7, 2003
- PDF | Request permission
Abstract:
We prove the quasi-Hopf algebra version of the Nichols-Zoeller theorem: A finite dimensional quasi-Hopf algebra is free over any quasi-Hopf subalgebra.References
- V. G. Drinfel′d, Quasi-Hopf algebras, Algebra i Analiz 1 (1989), no. 6, 114–148 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 6, 1419–1457. MR 1047964
- Frank Hausser and Florian Nill, Diagonal crossed products by duals of quasi-quantum groups, Rev. Math. Phys. 11 (1999), no. 5, 553–629. MR 1696105, DOI 10.1142/S0129055X99000210
- Frank Hausser and Florian Nill, Doubles of quasi-quantum groups, Comm. Math. Phys. 199 (1999), no. 3, 547–589. MR 1669685, DOI 10.1007/s002200050512
- —, Integral theory for quasi-Hopf algebras, preprint (math.QA/9904164).
- Irving Kaplansky, Bialgebras, Lecture Notes in Mathematics, University of Chicago, Department of Mathematics, Chicago, Ill., 1975. MR 0435126
- Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145, DOI 10.1007/978-1-4612-0783-2
- Akira Masuoka, Hopf algebra extensions and cohomology, New directions in Hopf algebras, Math. Sci. Res. Inst. Publ., vol. 43, Cambridge Univ. Press, Cambridge, 2002, pp. 167–209. MR 1913439
- Akira Masuoka, Cohomology and coquasi-bialgebra extensions associated to a matched pair of bialgebras, Adv. Math. 173 (2003), 262–315.
- Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637, DOI 10.1090/cbms/082
- Warren D. Nichols and M. Bettina Zoeller, A Hopf algebra freeness theorem, Amer. J. Math. 111 (1989), no. 2, 381–385. MR 987762, DOI 10.2307/2374514
- Ulrich Oberst and Hans-Jürgen Schneider, Untergruppen formeller Gruppen von endlichem Index, J. Algebra 31 (1974), 10–44 (German). MR 360610, DOI 10.1016/0021-8693(74)90003-9
- Florin Panaite, A Maschke-type theorem for quasi-Hopf algebras, Rings, Hopf algebras, and Brauer groups (Antwerp/Brussels, 1996) Lecture Notes in Pure and Appl. Math., vol. 197, Dekker, New York, 1998, pp. 201–207. MR 1615781
- Bodo Pareigis, Non-additive ring and module theory. I. General theory of monoids, Publ. Math. Debrecen 24 (1977), no. 1-2, 189–204. MR 450361, DOI 10.5486/pmd.1977.24.1-2.24
- B. Pareigis, Non-additive ring and module theory. II. ${\cal C}$-categories, ${\cal C}$-functors and ${\cal C}$-morphisms, Publ. Math. Debrecen 24 (1977), no. 3-4, 351–361. MR 498792, DOI 10.5486/pmd.1977.24.3-4.17
- Peter Schauenburg, Hopf modules and the double of a quasi-Hopf algebra, Trans. Amer. Math. Soc. 354 (2002), no. 8, 3349–3378. MR 1897403, DOI 10.1090/S0002-9947-02-02980-X
Bibliographic Information
- Peter Schauenburg
- Affiliation: Mathematisches Institut, Universität München, Theresienstr. 39, 80333 München, Germany
- MR Author ID: 346687
- Email: schauen@rz.mathematik.uni-muenchen.de
- Received by editor(s): March 1, 2002
- Received by editor(s) in revised form: November 24, 2002
- Published electronically: July 7, 2003
- Communicated by: Martin Lorenz
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 965-972
- MSC (2000): Primary 16W30
- DOI: https://doi.org/10.1090/S0002-9939-03-07181-8
- MathSciNet review: 2045410