Morava $K$-theory of extraspecial $2$-groups
HTML articles powered by AMS MathViewer
- by Björn Schuster and Nobuaki Yagita
- Proc. Amer. Math. Soc. 132 (2004), 1229-1239
- DOI: https://doi.org/10.1090/S0002-9939-03-07183-1
- Published electronically: September 17, 2003
- PDF | Request permission
Abstract:
We compute the Morava $K$-theory of some extraspecial 2-groups and associated compact groups.References
- Maurizio Brunetti, Morava $K$-theories and dihedral groups, Ricerche Mat. 44 (1995), no. 1, 31–40. MR 1470185
- Maurizio Brunetti, The $K(n)$-Euler characteristic of extraspecial $p$-groups, J. Pure Appl. Algebra 155 (2001), no. 2-3, 105–113. MR 1801408, DOI 10.1016/S0022-4049(99)00102-4
- Michael J. Hopkins, Nicholas J. Kuhn, and Douglas C. Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000), no. 3, 553–594. MR 1758754, DOI 10.1090/S0894-0347-00-00332-5
- John Hunton, The Morava $K$-theories of wreath products, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 309–318. MR 1027783, DOI 10.1017/S0305004100068572
- Igor Kriz, Morava $K$-theory of classifying spaces: some calculations, Topology 36 (1997), no. 6, 1247–1273. MR 1452850, DOI 10.1016/S0040-9383(96)00049-3
- Igor Kriz and Kevin P. Lee, Odd-degree elements in the Morava $K(n)$ cohomology of finite groups, Topology Appl. 103 (2000), no. 3, 229–241. MR 1758436, DOI 10.1016/S0166-8641(99)00031-0
- Daniel Quillen, The $\textrm {mod}$ $2$ cohomology rings of extra-special $2$-groups and the spinor groups, Math. Ann. 194 (1971), 197–212. MR 290401, DOI 10.1007/BF01350050
- Björn Schuster, On the Morava $K$-theory of some finite $2$-groups, Math. Proc. Cambridge Philos. Soc. 121 (1997), no. 1, 7–13. MR 1418356, DOI 10.1017/S0305004196001156
- M. Tezuka and N. Yagita, Cohomology of finite groups and Brown-Peterson cohomology, Algebraic topology (Arcata, CA, 1986) Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 396–408. MR 1000392, DOI 10.1007/BFb0085243
- M. Tezuka and N. Yagita, Cohomology of finite groups and Brown-Peterson cohomology. II, Homotopy theory and related topics (Kinosaki, 1988) Lecture Notes in Math., vol. 1418, Springer, Berlin, 1990, pp. 57–69. MR 1048175, DOI 10.1007/BFb0083692
- Nobuaki Yagita, Cohomology for groups of $\textrm {rank}_pG=2$ and Brown-Peterson cohomology, J. Math. Soc. Japan 45 (1993), no. 4, 627–644. MR 1239340, DOI 10.2969/jmsj/04540627
Bibliographic Information
- Björn Schuster
- Affiliation: FB 7 Mathematik, Bergische Universität Wuppertal, Wuppertal, Germany
- Email: schuster@math.uni-wuppertal.de
- Nobuaki Yagita
- Affiliation: Department of Mathematics, Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan
- MR Author ID: 185110
- Email: yagita@mito.ipc.ibaraki.ac.jp
- Received by editor(s): November 2, 2000
- Received by editor(s) in revised form: December 2, 2002
- Published electronically: September 17, 2003
- Communicated by: Paul Goerss
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1229-1239
- MSC (2000): Primary 55R35, 55N20; Secondary 57T25
- DOI: https://doi.org/10.1090/S0002-9939-03-07183-1
- MathSciNet review: 2045443