Common Borel directions of a meromorphic function with zero order and its derivative
HTML articles powered by AMS MathViewer
- by Tien-Yu Peter Chern PDF
- Proc. Amer. Math. Soc. 132 (2004), 1171-1175 Request permission
Abstract:
There is a meromorphic function of zero order for which the function and its derivative have no common Borel direction.References
- Huai Hui Chen, Singular directions of meromorphic functions of order zero corresponding to Hayman’s inequality, Acta Math. Sinica 30 (1987), no. 2, 234–237 (Chinese). MR 891931
- Chia-tai Chuang, “Un théorème relatif aux directions de Borel des fonctions méromorphes d’ordre fini, C. R. Acad. Sci. 204 (1937), 951-952.
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- A. Rauch, Cas ou une direction de Borel d’une fonction entière $f(z)$ d’ordre finite est aussi direction de Borel pour $f’(z)$, C. R. Acad. Sci., 199 (1934), 1014-1016.
- John Rossi, A sharp result concerning cercles de remplissage, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), no. 1, 179–185. MR 1304116
- M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975. Reprinting of the 1959 original. MR 0414898
- G. Valiron,“Recherches sur le théorème de M. Borel dans la théorie des fonctions méromorphes", Acta Math. 52 (1928), 67-92.
- Lo Yang, Value distribution theory, Springer-Verlag, Berlin; Science Press Beijing, Beijing, 1993. Translated and revised from the 1982 Chinese original. MR 1301781
- Guang Hou Zhang, Common Borel directions of meromorphic functions and their successive derivatives or integrals. I, Acta Math. Sinica 20 (1977), no. 2, 73–98 (Chinese). MR 513593
Additional Information
- Tien-Yu Peter Chern
- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- Address at time of publication: Department of Applied Mathematics, I-Shou University, Kaohsiung 840, Taiwan
- Email: pchern@math.msu.edu, tychern@isu.edu.tw
- Received by editor(s): May 17, 2002
- Received by editor(s) in revised form: December 19, 2002
- Published electronically: October 2, 2003
- Additional Notes: This paper was supported in part by the NSC R.O.C. under the contract NSC 92-2115-M-214-004, a fund from Academia Sinica (Taipei, Taiwan), and a fund from Michigan State University, U.S.A
- Communicated by: Juha M. Heinonen
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1171-1175
- MSC (2000): Primary 30D30
- DOI: https://doi.org/10.1090/S0002-9939-03-07195-8
- MathSciNet review: 2045434