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NONNEGATIVE UNITARY OPERATORS

K.-H. FÖRSTER AND B. NAGY

(Communicated by Joseph A. Ball)

Abstract. Unitary operators in Hilbert space map an orthonormal basis onto
another. In this paper we study those that map an orthonormal basis onto
itself. We show that a sequence of cardinal numbers is a complete set of
unitary invariants for such an operator. We obtain a characterization of these
operators in terms of their spectral properties. We show how much simpler
the structure is in finite-dimensional space, and also describe the structure of
certain isometries in Hilbert space.

1. Introduction

In this paper we study the structure and the unitary equivalence problem of
unitary operators acting in an arbitrary (in general nonseparable) complex Hilbert
space H and having the property that their infinite matrix with respect to some
orthonormal basis in H is entrywise nonnegative. Fixing an arbitrary orthonormal
basis E, a unitary operator U will have a nonnegative infinite matrix M(U ;E,E)
with respect to E if and only if the matrix will contain exactly one entry 1 in each
row and in each column, all other entries being 0. Since a unitary operator U can
be nonnegative in this sense with respect to no or else w.r.t. several orthonormal
bases, the first well-posed question should be: if U is nonnegative with respect to E,
is U then unitarily equivalent to some well-defined operator from a canonical class
(which should desirably be described in relatively simple terms)? We shall answer
this question in Theorem 1, and see also how this operator (unitarily equivalent to
U) determines a complete system of unitary invariants (the sequence c of cardinals
in Theorem 1). Note that our nonnegative unitary operator U (or the corresponding
nonnegative matrix) is a natural generalization of permutation matrices in finite-
dimensional spaces.

The next natural question is: how can we recognize (from the spectral prop-
erties of U) whether the unitary operator U is nonnegative with respect to some
orthonormal basis? The complete answer is given in Theorem 2 using the canonical
direct sum decomposition of U into absolutely continuous, singular continuous and
discrete (or point) parts and using the elements of multiplicity theory for these
parts. The example of the Fourier-Plancherel operator will show that the answer
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can also be used in some cases for effectively determining bases with respect to
which the given unitary operator has a nonnegative matrix.

Theorem 3 will satisfy those who had hoped that the natural characteristic (the
sequence d of cardinals in Theorem 1) of the operators from the canonical class
would be a complete set of unitary invariants for U . Though it is not so in general,
it is in finite-dimensional spaces. We can, e.g., prove it by a really finite-dimensional
argument, using the equality of the trace of matrices of an operator in different
bases. Finally, in Theorem 4 we shall describe the connection between nonnegativity
(of a certain type) of an isometry and of its unitary part in the von Neumann-Wold
decomposition.

Questions of (entrywise) nonnegativity of matrices of normal operators in the
finite-dimensional case have recently been studied in a number of papers. For an
example of the treated problems and for further references see, e.g., Jain and Snyder
[JS], Chen and Li [CL], Li, Hall and Zhang [LHZ] and Wang and Zhang [WZ]. A
similar problem for stochastic matrices was studied by Sinkhorn [S].

We always work in Hilbert space. For characterizations of isometries in finite-
dimensional lp (1 ≤ p ≤ ∞) spaces see, e.g., Li and So [LS], Chang and Li [CaL],
Wang et al. [W] and the references therein. In possibly infinite dimensions, for the
case of a surjective isometry (for p 6= 2) see [LT, Prop. 2.f.14, p. 112]. A complete
set of invariants for positively similar positively reachable finite-dimensional linear
systems has been obtained in [BCRS].

We shall list some facts from the theory of bounded linear operators in Hilbert
spaces which we shall need later. Let U be a unitary operator in the Hilbert space
H with resolution of the identity P , and let q denote Lebesgue measure on the unit
circle C1. Then H is the orthogonal sum of the subspaces

H = Hs ⊕Ha ⊕Hp

such that U leaves each subspace invariant, the restrictions Us, Ua, Up are unitary
operators called the singular continuous, absolutely continuous and point (discrete)
parts of U (with respect to q), and Hp is the closed subspace spanned by all the
eigenvectors of the operatorU . The subspaces consist of exactly those vectors x ∈ H
for which the nonnegative measure (P (·)x, x) is singularly continuous, absolutely
continuous or discrete (with respect to q), respectively (cf. [DS3]).

Let V be an isometry in H , and let Hw be the orthogonal complement V (H)⊥ ≡
H 	 V (H). Then

Ht := Hw ⊕ V Hw ⊕ V 2Hw ⊕ . . .
is a V -reducing closed subspace with complement Hu := H 	Ht ≡

⋂
n V

nH . The
restriction Vu := V |Hu is unitary, and the restriction Vt := V |Ht is a multiple
unilateral shift, the multiplicity of which is the orthogonal dimension of Hw (cf.
[Hal2]). The orthogonal sum V = Vu ⊕ Vt is the von Neumann-Wold or canonical
decomposition of V .

Let H,K be complex Hilbert spaces with orthonormal bases E,F , respectively,
of arbitrary cardinalities. The operator V : H → K is said to be (E,F )-nonnegative
if it maps each element in H with nonnegative E-coefficients into an element in K
with nonnegative F -coefficients. The infinite matrix M(V ;E,F ) of V with respect
to the bases (E,F ) is defined by its entries

vij := (V ej , fi) (ej ∈ E, fi ∈ F )
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where ( , ) denotes scalar product, the corresponding index set depends on E and
F (cf. [Hal2, p. 23]), and the matrix is, of course, entrywise nonnegative. If E = F ,
we shall also use the equivalent notation

M(V ;E,E) ≡M(V ;E) ≡ [V ]E ,

and shall write [V ]E(i, j) for the entry at subscripts (i, j). If the base(s) are clear
from the context, we shall simply write M(V ) and vij , respectively.

For the basics on cardinal numbers we refer the reader, e.g., to Kuratowski and
Mostowski [K-M].

2. The results

We shall need the following simple lemma, which shows that nonnegative unitary
operators in the infinite-dimensional Hilbert space case are natural generalizations
of permutation operators (matrices) in the finite-dimensional case.

Lemma 1. If V is an (E,F )-nonnegative isometry, then its matrix M(V ;E,F )
has in each row at most one positive entry, and has in each column at least one
positive entry. If V ∗ is an (F,E)-nonnegative isometry, then M(V ;E,F ) has in
each column at most one positive entry, and has in each row at least one positive
entry. A consequence: V is an (E,F )-nonnegative unitary operator if and only if
the infinite matrix M(V ;E,F ) contains exactly one entry 1 in each row and in each
column; all other entries are 0.

Proof. If V is an (E,F )-nonnegative isometry, we have∑
j

vjivjk = (V ei, V ek) = (ei, ek) = δik.

Since all entries are nonnegative, if vji > 0, then all the other entries in row j must
be 0. Furthermore, for each i we have

∑
j v

2
ji = 1. Hence there is a positive entry

in each column.
The matrix of the adjoint V ∗ with respect to the bases (F,E) is the conjugate

transpose of the matrix M(V ;E,F ). Hence, if V ∗ is an isometry, there is a positive
entry in each row, and at most one positive entry in each column of M(V ;E,F ).

As a consequence, if V is unitary, there is exactly one positive entry in each row
and each column in the matrix of V . Furthermore, we see that this entry must
equal 1. Conversely, if there is exactly one entry 1 in each row and each column in
the matrix of V , then V induces a bijection of the orthonormal basis E onto the
orthonormal basis F . Hence V is clearly unitary and also (E,F )-nonnegative. �

Remark. Note that if V is any unitary operator and F := V (E), then V is (E,F )-
nonnegative.

With the notation above consider an arbitrary (E,E)-nonnegative unitary oper-
ator U : H → H . The first result of this paper establishes a (nonnegative) canonical
form, depending on E, for U that will provide a complete set of unitary invariants.
In order to be able to formulate the theorem, we introduce the following notation.
The identity operator and matrix in any Hilbert space will be denoted by I, and in
n-dimensional Hilbert space the operator Sn (n ≥ 2) will have (with respect to the
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given orthonormal basis B) the matrix representation

M(Sn;B,B) =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .

The bilateral shift operator of multiplicity 1 in the space l2(Z) will be denoted by
S, and will have in the given orthonormal basis the infinite matrix representation
containing 1 immediately below the main diagonal and 0 everywhere else. With
this notation we formulate our first result as follows, and refer for the basic graph-
theoretic notions used in the proof, e.g., to the monograph [Kon] by D. König.

Theorem 1. Let U : H → H be an (E,E)-nonnegative unitary operator. Then
there is a Hilbert space K with an orthonormal basis F and an (F,E)-nonnegative
unitary operator V : K → H such that V −1 is (E,F )-nonnegative unitary, and

(∗) V −1UV = I ⊕ (S2 ⊕ S2 ⊕ · · · )⊕ (S3 ⊕ S3 ⊕ · · · )⊕ · · · ⊕ (S ⊕ S ⊕ · · · ).
Let d(1) ≡ d(1, E) denote the (orthogonal) dimension of the Hilbert space of the
operator I, let d(n) ≡ d(n,E) denote the cardinality of the terms in the nth orthog-
onal summand (·), and let d(∞) ≡ d(∞, E) denote the cardinality of the terms in
the last orthogonal summand (·). The sequence of cardinalities

d(U,E) := {d(∞), d(1), d(2), d(3), . . . }
is uniquely determined by E, and may depend on the considered basis E.

For each j ∈ N define the cardinal

c(j) ≡ c(j, E) :=
∑
{d(jr) : r ∈ N}.

(For the cardinality ℵ0 we shall also write ∞ in what follows.) Furthermore, define
c(∞) := d(∞) and

c(U) ≡ c(U,E) := {c(∞), c(1), c(2), c(3), . . . }.
Then the sequence of cardinalities c does not depend on E. If B is any orthonormal
basis in H for which U is (B,B)-nonnegative, then the corresponding sequence c
of cardinalities is again c(U). Furthermore, the sequence c(U) is a complete set of
unitary invariants for U in the following sense: assume that A is a bounded linear
operator in a Hilbert space Q. A is unitarily equivalent to U if and only if for
some orthonormal basis R in Q the operator A is (R,R)-nonnegative unitary and
c(A) = c(U).

Proof. Lemma 1 shows that the infinite matrix of U with respect to the bases (E,E)
has exactly one 1 in each row and in each column; all other entries are 0. Define
the corresponding directed graph D = D(U,E) as follows. The vertices of D are
the elements of E or, equivalently, the corresponding indices, and the ordered pair
(p, q) is an edge if and only if upq = 1. The corresponding non-directed graph will
be denoted by G = G(U,E). The (in general, infinite) graph G has the property
that each vertex is the endpoint of at most two edges. Hence [Kon, Satz 27, Kap.
I, p. 17] applies and shows that each connected component of G is either a path
or a cycle or a unilateral infinite path or a bilateral infinite path. Furthermore,
Sätze 21-23 there show that the graph G is the graph-theoretic sum of its uniquely
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determined connected components, and that if p and q are vertices belonging to
different connected components, then there is no path connecting the two vertices.

Assume that there is a connected component Ga in the graph G which is a
path, say p1p2 . . . pn. Then either the pair (p1, p2) or (p2, p1) is an edge in D. To
consider a definite case, assume that up1p2 = 1. In view of the 0-1 pattern of
the matrix M(U) of U we then have up1p2 . . . upn−1pn = 1. The pattern of M(U)
shows, however, that there is an index j such that ujp1 = 1. This contradicts the
maximality of the connected component path above. Hence there cannot be such
a connected component. Assuming the existence of a connected component Gb
which is a unilateral infinite path p1p2 . . . , we reach a contradiction in a similar
way. Hence each connected component of G is either a cycle or a bilateral infinite
path (cf. also Ore [O, pp. 25–27]).

Assume that the cardinality of the set of the row (or, equivalently, column)
indices kj such that ukjkj = 1 is d(1), and let K1 be a Hilbert space with an
orthonormal basis F1 of the same cardinality. For any fj ∈ F1 define V1fj := ekj .
Then V −1

1 UV1 clearly extends to the identity on K1.
Consider now a connected component Ga that is a cycle of n vertices, say

p1p2 . . . pnp1. Similarly, as in the penultimate paragraph, we establish that there
are two possibilities: in order to consider a definite case we may and shall assume
that up1pn = · · · = up2p1 = 1. This means for the corresponding basis vectors in E
that

Uep1 = ep2 , . . . , Uepn = ep1 .

Taking the n-dimensional Hilbert space Cn with orthonormal basis {b1, . . . , bn}
and defining Wnbj := epj , we obtain that W−1

n UWn extends to Sn. Forming
the orthogonal sum Kn of d(n) copies of Cn, the union Fn of the corresponding
orthonormal bases and the corresponding orthogonal sum Vn = Wn⊕Wn⊕ . . . , we
have in the space Kn,

V −1
n UVn = Sn ⊕ Sn ⊕ . . . .

Consider now a connected component Ga that is a bilateral infinite path, say
. . . , q−1, q0, q1, . . . . Considering again one of two possibilities, assume that uqjqj+1 =
1 for every j ∈ Z. Take the canonical orthonormal basis {bj; j ∈ Z} in l2(Z), and
define Wbj := eq−j . Then W−1UWbj = bj+1 for every j ∈ Z, i.e., W−1UW extends
to S. Forming the orthogonal sum K∞ of d(∞) copies of l2(Z), the union F∞ of the
corresponding orthonormal bases, and the orthogonal sum V∞ of the corresponding
operators, we have in the space K∞,

V −1
∞ UV∞ = S ⊕ S ⊕ . . . .

Forming again the required orthogonal sums, e.g.,

V := V1 ⊕ V2 ⊕ · · · ⊕ V∞,
we clearly obtain the first statement of the theorem. Furthermore, the construction
shows that the considered basis E uniquely determines the sequence of cardinals
d(U,E).

Assume now that U is also (B,B)-nonnegative unitary for some orthonormal
basis B in H . Then U is also unitary equivalent to a representation of the form
(∗), where the sequence of cardinals d(U,B) may naturally depend on B. The
representations for E and B are unitarily equivalent. So we shall seek a convenient
form for a complete set of unitary invariants for representations of the form (∗). A
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complete set of unitary invariants is naturally given by the multiplicity theory for
normal operators. For the general theory in nonseparable Hilbert spaces we refer
the reader to [Hal1] or [Bro] or [Ples], and we shall cite the relevant and needed
facts without detailed reference.

It is well known (see, e.g., [Conw]) that each summand S is unitarily equivalent to
the multiplication operator Nq by the identity function on the space L ≡ L2(C1, q),
where C1 is the unit circle in C and q is normalized Lebesgue measure on C1.
Hence we may and shall replace in each representation (∗) the operators S by the
operators Nq.

For uniformity in the notation write S1 for the 1-dimensional identity operator
(or matrix), and consider a representation in the space H of the form

T := (S1 ⊕ S1 ⊕ · · · )⊕ (S2 ⊕ S2 ⊕ · · · )⊕ (S3 ⊕ S3 ⊕ · · · )⊕ · · · ⊕ (Nq ⊕Nq ⊕ · · · ),

where the sequence of cardinals d is now determined by the basis B. It is clear that
the operator T is the orthogonal sum of its “point part” Tp, which is the orthogonal
sum of all the parts denoted above by Sk, and of its absolutely continuous part Ta
(with respect to Lebesgue measure on the unit circle C1), which is the orthogonal
sum of all the parts Nq. A complete system of unitary invariants (in our case)
can be given by the union of a complete system for Tp and of a complete system
for Ta. The latter part clearly has the spectral type (in Plesner’s terminology)
d(∞, B)m ≡ c(∞, B)m, where m is the spectral type of the Lebesgue measure
above. Hence the cardinal c(∞) ≡ c(∞, B) is a complete system for the part Ta.

It is known that a complete system for the point part Tp is given by the multi-
plicities (in the generally used terminology) of the numbers in the point spectrum
of the operator Tp. This point spectrum is the union of the point spectra of all the
(occurring) parts Sk. So it is a subset of the set

σ := {e2πir/n : n ∈ N, r = 1, 2, . . . , n}.

For a fixed value n ∈ N the number e2πi/n can only appear in the (point) spectra
of Snr, r ∈ N, with multiplicity 1. Hence its multiplicity in the part Tp is

µ(e2πi/n) =
∑
r∈N

d(nr,B) = c(n,B).

Furthermore, if the positive integers k, n are relatively prime, then clearly

µ(e2πik/n) = µ(e2πi/n) = c(n,B).

Hence the multiplicity of each number in the point spectrum of Tp is determined
by the corresponding term in the sequence of cardinals {c(1, B), c(2, B), . . . }. Con-
versely, the multiplicities determine the sequence c. Therefore, the whole sequence
{c} of cardinals is independent of the basis B, and is a complete system of unitary
invariants for T = Tp ⊕ Ta.

Now let A be a bounded linear operator in a Hilbert space Q. Assume first
that A is (R,R)-nonnegative unitary for some orthonormal basis R in Q, and that
c(A) = c(U). By what has been proved above, A is unitarily equivalent to U .
Conversely, assume that to the operator A there exists a unitary T : Q → H
satisfying A = T−1UT . Let R := T−1(E). Then R is an orthonormal basis in Q,
and A is clearly (R,R)-nonnegative unitary. With the notation Trj = ej for all
indices, the unitary equivalence above shows that the corresponding matrices in the



NONNEGATIVE UNITARY OPERATORS 1187

bases R and E, respectively, have identical entries for every pair of indices i, j:

[A]R(i, j) = (Arj , ri) = (T ∗UTrj, ri) = (Uej , ei) = [U ]E(i, j).

The equality of the matrices above (in the corresponding bases) yields that the
cardinalities of the sets of the cycles of equal lengths are equal. Hence d(A,R) =
d(U,E), which implies c(A) = c(U). The proof is complete. �
Remark. It is clear that the Hilbert space K in the statement can also be chosen to
be H , and the basis F can be a permutation of E. Furthermore, simple examples
show that the sequence d is, in general, not a set of unitary invariants. For example,
the operators

U1 := S1 ⊕ S2 ⊕ S3 ⊕ . . . , U2 := U1 ⊕ U1

are, by Theorem 1, unitarily equivalent, since for both we have

c(1) = c(2) = · · · =∞.
On the other hand, the sequences d are different.

Remark. Let U : H → H be an (E,E)-nonnegative unitary operator. Then U is
unitarily equivalent to its adjoint U∗, and d(U∗, E) = d(U,E).

Corollary. Let U : H → H be an (E,E)-nonnegative unitary operator. Then the
point spectrum of U is the set⋃

{J(n) : n ∈ N, d(n,E) > 0},

where J(n) denotes the set of the nth roots of unity, and d(n,E) is the corresponding
element of d(U,E).

Proof. The point spectrum of any orthogonal sum of operators is the union of the
point spectra of the operators. Since the point spectrum of the bilateral shift is
empty, the canonical decomposition of Theorem 1 yields the statement. �
Remark. If H is finite-dimensional, this Corollary gives the spectrum of U .

Theorem 2. The unitary operator U is nonnegative with respect to some orthonor-
mal basis E if and only if for its canonical decomposition into singular continuous,
absolutely continuous (w.r.t. Lebesgue measure) and point parts

U = Us ⊕ Ua ⊕ Up
the following conditions hold: the subspace Hs of Us is {0}, the spectral type of
the part Ua is cm, where c is any cardinal and m is the spectral type of Lebesgue
measure on C1, the point spectrum of the operator Up is a subset of the set

σ := {e2πir/n : n ∈ N, r = 1, 2, . . . , n},
and if the cardinal cn denotes the multiplicity of the number e2πi/n (in the point
spectrum, in the usual sense) for U (or, equivalently, for Up), then:

1) j|n (i.e., j divides n) implies cj ≥ cn.
2) If cn is a finite cardinal, then there is a nonnegative integer rn such that for

every r > rn we have cnr = 0, and

cn +
∑
p2

cnp2 +
∑
p4

cnp4 + · · · ≥
∑
p1

cnp1 +
∑
p3

cnp3 + . . . .

(In the above formula, pk means any product of k pairwise distinct primes, and
summation is extended to all such products. The conditions clearly imply that all
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sums above contain only a finite number of nonzero terms; hence we have simple
additions on both sides.)

3) If k, n are relatively prime, then, for the multiplicities,

µ(e2πik/n) = µ(e2πi/n) = cn.

Proof. Necessity. Assume that U is nonnegative unitary with respect to some
orthonormal basis E. Theorem 1 shows that then the first conditions and 3) hold,
and

(+) cn = c(n) =
∑
r∈N

d(nr,E).

We shall show that 1) and 2) are also satisfied.
If j|n, then there is s ∈ N such that n = js. Hence

cn =
∑
r∈N

d(nr) =
∑
r∈N

d(jsr) ≤
∑
r∈N

d(jr) = cj ;

so 1) holds.
If cn is a finite cardinal, then (+) shows that there is rn such that r > rn implies

d(nr) = 0. On the other hand, this implies that cnr = 0, as stated. The connection
between the relevant nonnegative integer numbers d and c is then the following
finite system of linear equations:

d(n) + d(2n) + d(3n) + d(4n) + d(5n) + d(6n) + · · ·+ d(rnn) = cn

d(2n) + d(4n) + d(6n) + · · ·+ . . . = c2n

d(3n) + d(6n) + · · ·+ . . . = c3n

· · ·+ · · ·+ . . . = . . .

d(rnn) = crnn.

(∗∗)

The structure of this system shows that, in the notation of the theorem, d(n) can
be written as

(+−) d(n) = cn −
∑
p1

cnp1 +
∑
p2

cnp2 −
∑
p3

cnp3 +
∑
p4

cnp4 + . . . ,

where the stated finiteness of all the sums clearly holds. Indeed, let us check that
the summation on the right-hand side of (+−) leaves only d(n) from the left-hand
side of the equations (∗∗): if d(qn) (q ≥ 2) occurs on the left-hand side of (∗∗),
and we have the prime factorization q = qa1

1 . . . qass with pairwise distinct factors
q1, . . . , qs, then the coefficient of d(qn) on the right-hand side of (+−) is(

s
0

)
−
(
s
1

)
+
(
s
2

)
− · · · = (1− 1)s = 0.

Since each d(n) ≥ 0, we obtain the stated inequality in 2).
Sufficiency. The assumption on the spectral type of the part Ua implies that

Ua is unitarily equivalent to the orthogonal sum of c copies of the operator Nq or,
equivalently, of the operator S. The part Us is clearly 0. The point spectrum of the
“point part” Up is contained in the set σ above, and the sequence {cn : n ∈ N} of
cardinals, by condition 3), determines uniquely the multiplicity of each point in the
point spectrum of Up (or, equivalently, of U). Using conditions 1) and 2), we shall
show that we can determine a (not necessarily unique) sequence {d(n) : n ∈ N} of
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cardinals such that Up is unitarily equivalent to the orthogonal sum of the sums of
d(n) copies of the operator Sn (n = 1, 2, . . . ).

If for a fixed n ∈ N the cardinal cn is finite, then we define the integer d(n)
by the equation (+−). By condition 2), d(n) is then a nonnegative integer. By
condition 1), then

∞ > cn ≥ c2n ≥ · · · ≥ crnn.
Hence we can and shall define d(2n), d(3n), . . . , d(rnn) similarly. Therefore, the
finite sequence

{d(n), d(2n), . . . , d(rnn)}
is the unique solution of the linear system of equations (∗∗). It follows that∑

r∈N

d(rn) =
rn∑
r=1

d(rn) = cn.

If for a fixed n the cardinal cn is infinite, then we define d(n) := cn. Then,
clearly, ∑

r∈N

d(rn) ≥ cn.

On the other hand, applying these definitions of d(·) and 1), for every r ∈ N we
obtain the following inequality for the cardinals:

d(rn) ≤ crn ≤ cn.
Hence ∑

r∈N

d(rn) ≤
∑
r∈N

cn ≤ cnℵ0 ≤ cncn = cn.

We have obtained for every n ∈ N,∑
r∈N

d(rn) = cn.

By Theorem 1, the operator

T := (S1 ⊕ S1 ⊕ . . . )⊕ (S2 ⊕ S2 ⊕ . . . )⊕ . . .
with d(1), d(2), . . . copies of orthogonal summands in each term in parentheses is
then unitarily equivalent to the operator Up (which has the point spectrum multi-
plicities cn). Hence

V := (S ⊕ S ⊕ . . . )⊕ T
(with c copies of S in the parentheses) is unitarily equivalent to U . Since V is
clearly nonnegative unitary with respect to some orthonormal basis B, by Theorem
1, U is nonnegative unitary for an orthonormal basis E. The proof is complete. �

Example. The following classical example will demonstrate the applicability of
Theorem 2.

Consider the Fourier-Plancherel operator U in the space H := L2(R), i.e., let

(Ug)(y) := (2π)−1/2

∫
R

g(x)eixydx (g ∈ L2(R)),

where the integral is understood in the well-known sense. It is known that the
normalized Hermite functions fn (n = 0, 1, 2, . . . ) defined by

fn(x) := (−1)n(2nn!
√
π)−1/2ex

2/2(
d

dx
)ne−x

2
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form an orthonormal basis F in the separable space H . Furthermore, for every
n we have Ufn = infn. It is also known (see, e.g., [R:Sz-N]) that the operator
U is unitary with spectrum {1, i,−1,−i}. Hence the ranges of the corresponding
spectral projections are the respective spanned closed linear subspaces

P (U, ik)H = sp{fk+4n;n = 0, 1, 2, . . .} (k = 0, 1, 2, 3).

We see that the multiplicities of the points ik in the (point) spectrum (i.e., the
orthogonal dimensions of the subspaces) are all ℵ0. Hence the conditions 1), 2),
and 3) in Theorem 2 are satisfied:

c1 = c2 = c4 = ℵ0, µ(e2πi3/4) = ℵ0 = c4,

and ck = 0 for every other positive integer k. By Theorem 2, there is an orthonormal
basis E such that M(U ;E,E) is nonnegative. We shall show (what is clear from
the corresponding part of the proof), that also in our case the sequence d is not
determined uniquely. For example, define the vector e4n ∈ H with the help of the
vectors f4n+k (k = 0, 1, 2, 3) for every n = 0, 1, 2, . . . in the same way as for the
case n = 0:

e0 :=
1
2

(f0 + f1 + f2 + f3),

e1 := Ue0 =
1
2

(f0 + if1 − f2 − if3),

e2 := Ue1 =
1
2

(f0 − f1 + f2 − f3),

e3 := Ue2 =
1
2

(f0 − if1 − f2 + if3).

Then we have defined 4 vectors such that {e0, e1, e2, e3} is another orthonormal
basis for the subspace spanned by the corresponding vectors f and, in addition to
the indicated mapping properties, Ue3 = e0. Continuing in exactly the same way
in each corresponding 4-dimensional subspace, we obtain the orthonormal basis E,
with respect to which M(U ;E,E) is nonnegative, d(4, E) = ℵ0, and every other
d(k,E) = 0.

It is now also clear how we can obtain an orthonormal basis B, for which
M(U ;B,B) is nonnegative, and (as in the proof of Theorem 2)

d(1, B) = d(2, B) = d(4, B) = ℵ0,

and every other d(k,B) = 0. To begin, define

b0 := f0, b1 :=
1√
2

(f4 + f2), b2 :=
1√
2

(f4 − f2),

b3 :=
1
2

(f8 + f1 + f6 + f3), b4 :=
1
2

(f8 + if1 − f6 − if3),

b5 :=
1
2

(f8 − f1 + f6 − f3), b6 :=
1
2

(f8 − if1 − f6 + if3),

and continue in this way in the appropriate 7-dimensional subspaces. The con-
structed basis B will satisfy all the requirements.

The next result (the case of a finite-dimensional space) would follow from The-
orems 1 and 2. However, we prefer another proof, showing the usefulness of the
trace in this situation.
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Theorem 3. Let U be an (E,E)-nonnegative unitary operator in the finite-dimen-
sional Hilbert space H = CN . Consider the finite sequence of nonnegative numbers

d(U) ≡ d(U,E) := {d(1, E), d(2, E), d(3, E), . . . , d(u,E)},

where the cardinals d(k,E) (1 ≤ k ≤ u <∞) have the same meaning as in Theorem
1 (and are now finite). Then the sequence d(U,E) does not depend on E, and is a
complete set of unitary invariants for U in the following sense: assume that A is a
bounded linear operator in a Hilbert space Q. A is unitarily equivalent to U if and
only if for some orthonormal basis R in Q the operator A is (R,R)-nonnegative
unitary, and d(A,R) = d(U,E).

Proof. Assume first that U is also (B,B)-nonnegative unitary for some orthonormal
basis B in H . Denote the corresponding basis elements by ej , bj (j = 1, . . . , N),
respectively, define Wej := bj, and extend it in the obvious way to H . Then W is
a unitary operator and, by assumption,

(W ∗UWei, ej) = (UWei,Wej) = (Ubi, bj) ≥ 0

for all subscripts i, j. Denoting the matrix of U in the basis B by [U ]B, we obtain
for every k ∈ N,

[U ]kB = [W ∗UW ]kE = [W ∗]E [U ]kE [W ]E .

Hence the traces of [U ]kB and [U ]kE are equal, and both matrices are clearly permu-
tation matrices. By Theorem 1, the first powers are unitarily equivalent to matrices
of the form

ME = (M(S1)⊕· · ·⊕M(S1))⊕(M(S2)⊕· · ·⊕M(S2))⊕· · ·⊕(M(Su)⊕· · ·⊕M(Su)),

where all matrices M(Sk) are now M(Sk;E,E) for 2 ≤ k ≤ u, and M(S1) ⊕
· · · ⊕M(S1) is the d(1, E)-dimensional identity matrix (and everything similarly
for the basis B). Furthermore, the numbers of the summands in the consecutive
parentheses are d(1, E), d(2, E), . . . , d(u,E), and similarly for the basis B. Hence,
with self-explaining notation,

d(1, B) = trace(MB) = trace(ME) = d(1, E) =: d(1),

d(1) + 2d(2, B) = trace(M2
B) = trace(M2

E) = d(1) + 2d(2, E).

Hence d(2, B) = d(2, E) =: d(2). Furthermore,

d(1) + 3d(3, B) = trace(M3
B) = trace(M3

E) = d(1) + 3d(3, E).

Continuing in this way, we obtain that

(++) d(U,E) = d(U,B)

is independent of the bases as stated.
The last sentence in the statement of the theorem is proved exactly as in the

proof of Theorem 1. Since in the finite-dimensional case we have (++), we obtain
that A is unitarily equivalent to U if and only if d(A) = d(U), independently of
the bases. Hence we have proved that the finite sequence d(U) is a complete set of
unitary invariants in the sense stated in the theorem. �

For the basic facts on the von Neumann-Wold decomposition of isometries see,
e.g., [Sz-N:F] or [Hal2].
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Theorem 4. Assume that V : H → H is an isometry with unitary part Vu. Vu is
nonnegative for some orthonormal basis F in its subspace Hu if and only if there
is an orthonormal basis E in H such that the matrix M(V ;E,E) has exactly one
1 in each column (all other entries in the column are 0). In this case the cardinal
of the set of the zero rows is the multiplicity of the unilateral shift part Vt in the
Wold decomposition.

Proof. Assume first that the matrix M(Vu;F, F ) is nonnegative. By Lemma 1, it
has then exactly one 1 in each row and in each column; all other entries are 0. It is
well known that each isometry, hence V , is the orthogonal sum of its unitary part Vu
and of a (multiple, unilateral) shift Vt. The latter is, in turn, the orthogonal sum (of
some cardinality) of simple (unilateral) shifts T , which have for some orthonormal
basis B of cardinality ℵ0 the infinite matrix M(T ;B,B) having 1’s immediately
below the main diagonal and 0’s everywhere else, i.e., satisfying

Tbk = bk+1 (bk ∈ B, k = 1, 2, . . . ).

Taking the union of the bases F and B, from the latter one of the cardinality
determined by the orthogonal sum (i.e., by the multiplicity of the multiple shift),
we obtain an orthonormal basis E that satisfies the requirements of the necessity
statement.

Assume now that each column in M(V ;E,E) has exactly one entry 1 and all
other entries in the column are 0. Then the subspace V (H) consists exactly of
the vectors h ∈ H , the components of which corresponding to the zero rows of
the matrix are 0. The “canonical” wandering subspace Hw for V is the orthogonal
complement of V (H). Hence an orthonormal basis Ew for it consists of all the
vectors ej ∈ E corresponding to the zero rows in the matrix. The subspace Ht

of the unilateral shift part Vt is the orthogonal sum of the subspaces V nHw for
n = 0, 1, 2, . . . . Hence the set S :=

⋃∞
n=0 V

nEw is an orthonormal basis for Ht.
The 0-1 structure of the matrix shows that each vector V nej ∈ V nEw is again
a vector in the basis E; hence S ⊆ E. From this, S = E ∩ Ht =: Et. The (in
general, infinite) submatrix of M(V ;E,E) based on the subset Eu := E \ Et of E
has exactly one 1 in each column and in each row; all other entries are 0. Hence
it is the matrix of an (Eu, Eu)-nonnegative unitary operator, which is the unitary
part Vu of V in the canonical (Wold) decomposition. The construction shows also
that the cardinal of the zero rows in M(V ;E,E) is exactly the multiplicity of the
multiple shift Vt in the Wold decomposition. �
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