$C^n$ interval maps not Borel conjugate to any $C^{\infty }$ map
HTML articles powered by AMS MathViewer
- by Sylvie Ruette
- Proc. Amer. Math. Soc. 132 (2004), 1091-1093
- DOI: https://doi.org/10.1090/S0002-9939-03-07222-8
- Published electronically: August 20, 2003
- PDF | Request permission
Abstract:
We show that there exist interval maps that are not Borel conjugate to any $C^{\infty }$ map. These examples can be chosen to be topologically mixing and $C^n$, for any finite, arbitrarily large $n$.References
- Jérôme Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math. 100 (1997), 125–161. MR 1469107, DOI 10.1007/BF02773637
- Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR 0457675, DOI 10.1007/BFb0082364
- B. M. Gurevich and A. S. Zargaryan, Continuous one-dimensional mapping without measure with maximal entropy, Funktsional. Anal. i Prilozhen. 20 (1986), no. 2, 60–61 (Russian). MR 847143
- Sheldon E. Newhouse, Continuity properties of entropy, Ann. of Math. (2) 129 (1989), no. 2, 215–235. MR 986792, DOI 10.2307/1971492
- I. M. Kamenetzky, Sur l’interpolation au moyen des dérivées et sur les procédés d’interpolation correspondants. I, C. R. (Doklady) Acad. Sci. URSS (N.S.) 25 (1939), 356–358 (French). MR 0002003
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108, DOI 10.1007/978-1-4612-5775-2
Bibliographic Information
- Sylvie Ruette
- Affiliation: Universitat Autònoma de Barcelona– Departament de Matemàtiques– Edifici Cc–08193 Cerdanyola del Vallès–Barcelona–Spain
- Address at time of publication: Laboratoire de Mathématiques, Topologie et Dynamique, Université Paris Sud, 91405 Orsay, France
- Email: ruette@mat.uab.es, sylvie.ruette@math.u-psud.fr
- Received by editor(s): November 28, 2002
- Published electronically: August 20, 2003
- Communicated by: Michael Handel
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1091-1093
- MSC (2000): Primary 37E05, 37C15; Secondary 37A05
- DOI: https://doi.org/10.1090/S0002-9939-03-07222-8
- MathSciNet review: 2045425