## Minimal vectors in arbitrary Banach spaces

HTML articles powered by AMS MathViewer

- by Vladimir G. Troitsky PDF
- Proc. Amer. Math. Soc.
**132**(2004), 1177-1180 Request permission

## Abstract:

We extend the method of minimal vectors to arbitrary Banach spaces. It is proved, by a variant of the method, that certain quasinilpotent operators on arbitrary Banach spaces have hyperinvariant subspaces.## References

- Charalambos D. Aliprantis and Kim C. Border,
*Infinite-dimensional analysis*, 2nd ed., Springer-Verlag, Berlin, 1999. A hitchhiker’s guide. MR**1717083**, DOI 10.1007/978-3-662-03961-8 - Shamim Ansari and Per Enflo,
*Extremal vectors and invariant subspaces*, Trans. Amer. Math. Soc.**350**(1998), no. 2, 539–558. MR**1407476**, DOI 10.1090/S0002-9947-98-01865-0 - G. Androulakis,
*A note on the method of minimal vectors*, Trends in Banach spaces and operator theory, Contemporary Mathematics (A. Kaminska, editor), Vol. 321, Amer. Math. Soc., Providence, RI, 2003, pp. 29–36. - I. Chalendar, J. R. Partington, and M. Smith,
*Approximation in reflexive Banach spaces and applications to the invariant subspace problem*, Proc. Amer. Math. Soc. (2004), to appear. - P. Enflo,
*On the invariant subspace problem in Banach spaces*, Séminaire Maurey–Schwartz (1975–1976) Espaces $L^{p}$, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 14-15, Centre Math., École Polytech., Palaiseau, 1976, pp. 7. MR**0473871** - Per Enflo,
*On the invariant subspace problem for Banach spaces*, Acta Math.**158**(1987), no. 3-4, 213–313. MR**892591**, DOI 10.1007/BF02392260 - N. D. Hooker,
*Lomonosov’s hyperinvariant subspace theorem for real spaces*, Math. Proc. Cambridge Philos. Soc.**89**(1981), no. 1, 129–133. MR**591979**, DOI 10.1017/S0305004100058011 - V. I. Lomonosov,
*Invariant subspaces of the family of operators that commute with a completely continuous operator*, Funkcional. Anal. i Priložen.**7**(1973), no. 3, 55–56 (Russian). MR**0420305** - C. Pearcy,
*On technique of Enflo*, Proc. Amer. Math. Soc., to appear. - C. J. Read,
*A solution to the invariant subspace problem*, Bull. London Math. Soc.**16**(1984), no. 4, 337–401. MR**749447**, DOI 10.1112/blms/16.4.337 - C. J. Read,
*A solution to the invariant subspace problem on the space $l_1$*, Bull. London Math. Soc.**17**(1985), no. 4, 305–317. MR**806634**, DOI 10.1112/blms/17.4.305 - Heydar Radjavi and Peter Rosenthal,
*Invariant subspaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR**0367682**, DOI 10.1007/978-3-642-65574-6

## Additional Information

**Vladimir G. Troitsky**- Affiliation: Department of Mathematics, University of Alberta, Edmonton, AB, T6G 2G1 Canada
- Email: vtroitsky@math.ualberta.ca
- Received by editor(s): November 27, 2002
- Received by editor(s) in revised form: December 22, 2002
- Published electronically: August 28, 2003
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**132**(2004), 1177-1180 - MSC (2000): Primary 47A15
- DOI: https://doi.org/10.1090/S0002-9939-03-07223-X
- MathSciNet review: 2045435