## A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time

HTML articles powered by AMS MathViewer

- by Hans Lindblad PDF
- Proc. Amer. Math. Soc.
**132**(2004), 1095-1102 Request permission

## Abstract:

We show that the nonlinear wave equation corresponding to the minimal surface equation in Minkowski space time has a global solution for sufficiently small initial data.## References

- Yvonne Choquet-Bruhat and Demetrios Christodoulou,
*Existence of global solutions of the Yang-Mills, Higgs and spinor field equations in $3+1$ dimensions*, Ann. Sci. École Norm. Sup. (4)**14**(1981), no. 4, 481–506 (1982). MR**654209**, DOI 10.24033/asens.1417 - Demetrios Christodoulou,
*Global solutions of nonlinear hyperbolic equations for small initial data*, Comm. Pure Appl. Math.**39**(1986), no. 2, 267–282. MR**820070**, DOI 10.1002/cpa.3160390205 - —,
*Oral communication*, 1999. - Demetrios Christodoulou,
*Solutions globales des équations de Yang et Mills*, C. R. Acad. Sci. Paris Sér. I Math.**293**(1981), no. 2, 139–141 (French, with English summary). MR**637111** - D. Christodoulou and S. Klainerman,
*The nonlinear stability of Minkowski space-time*, Princeton University Press, Princeton, NJ. - R. Hamilton,
*Oral Communication*, Oberwolfach, 1994. - J. Hoppe,
*Some classical solutions of relativistic membrane equations in $4$-space-time dimensions*, Phys. Lett. B**329**(1994), no. 1, 10–14. MR**1279146**, DOI 10.1016/0370-2693(94)90510-X - Lars Hörmander,
*$L^1,\ L^\infty$ estimates for the wave operator*, Analyse mathématique et applications, Gauthier-Villars, Montrouge, 1988, pp. 211–234. MR**956961** - Lars Hörmander,
*Lectures on nonlinear hyperbolic differential equations*, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 26, Springer-Verlag, Berlin, 1997. MR**1466700** - G. Huisken and M. Struwe,
*Oral communication*, 1999. - F. John and S. Klainerman,
*Almost global existence to nonlinear wave equations in three space dimensions*, Comm. Pure Appl. Math.**37**(1984), no. 4, 443–455. MR**745325**, DOI 10.1002/cpa.3160370403 - Sergiu Klainerman,
*Uniform decay estimates and the Lorentz invariance of the classical wave equation*, Comm. Pure Appl. Math.**38**(1985), no. 3, 321–332. MR**784477**, DOI 10.1002/cpa.3160380305 - S. Klainerman,
*The null condition and global existence to nonlinear wave equations*, Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984) Lectures in Appl. Math., vol. 23, Amer. Math. Soc., Providence, RI, 1986, pp. 293–326. MR**837683** - Sergiu Klainerman,
*Global existence for nonlinear wave equations*, Comm. Pure Appl. Math.**33**(1980), no. 1, 43–101. MR**544044**, DOI 10.1002/cpa.3160330104 - —,
*Long time behaviour of solutions to nonlinear wave equations,*, PWN, Warsaw, 1984, pp. 1209–1215.*Proceedings of the International Congress of Mathematicians (Warsaw, 1983)* - Ta Tsien Li and Yi Zhou,
*Life-span of classical solutions to nonlinear wave equations in two space dimensions*, J. Math. Pures Appl. (9)**73**(1994), no. 3, 223–249. MR**1273703** - Ta Tsien Li and Yi Zhou,
*Life-span of classical solutions to nonlinear wave equations in two-space-dimensions. II*, J. Partial Differential Equations**6**(1993), no. 1, 17–38. MR**1210250** - Hans Lindblad,
*On the lifespan of solutions of nonlinear wave equations with small initial data*, Comm. Pure Appl. Math.**43**(1990), no. 4, 445–472. MR**1047332**, DOI 10.1002/cpa.3160430403 - Hans Lindblad,
*Global solutions of nonlinear wave equations*, Comm. Pure Appl. Math.**45**(1992), no. 9, 1063–1096. MR**1177476**, DOI 10.1002/cpa.3160450902

## Additional Information

**Hans Lindblad**- Affiliation: Department of Mathematics, University of California at San Diego, La Jolla, California 92093-0112
- Email: lindblad@math.ucsd.edu
- Received by editor(s): December 9, 2002
- Published electronically: September 18, 2003
- Communicated by: David S. Tartakoff
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**132**(2004), 1095-1102 - MSC (2000): Primary 35-xx
- DOI: https://doi.org/10.1090/S0002-9939-03-07246-0
- MathSciNet review: 2045426