An estimate for the number of bound states of the Schrödinger operator in two dimensions
HTML articles powered by AMS MathViewer
- by Mihai Stoiciu
- Proc. Amer. Math. Soc. 132 (2004), 1143-1151
- DOI: https://doi.org/10.1090/S0002-9939-03-07257-5
- Published electronically: August 28, 2003
- PDF | Request permission
Abstract:
For the Schrödinger operator $-\Delta + V$ on $\mathbb R ^2$ let $N(V)$ be the number of bound states. One obtains the following estimate: \[ N(V) \leq \ 1 \ + \int _{\mathbb R ^2} \int _{\mathbb R ^2} |V(x)| \ |V(y)| \ |C_1 \ln |x-y| + C_2|^2 \ dx dy \] where $C_1 = -\frac {1}{2\pi }$ and $C_2 = \frac {\ln 2 - \gamma }{2 \pi }$ ($\gamma$ is the Euler constant). This estimate holds for all potentials for which the previous integral is finite.References
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR 1225604
- George B. Arfken and Hans J. Weber, Mathematical methods for physicists, 4th ed., Academic Press, Inc., San Diego, CA, 1995. MR 1423357
- M. Š. Birman, On the spectrum of singular boundary-value problems, Mat. Sb. (N.S.) 55 (97) (1961), 125–174 (Russian). MR 0142896
- H. J. Brascamp, Elliott H. Lieb, and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Functional Analysis 17 (1974), 227–237. MR 0346109, DOI 10.1016/0022-1236(74)90013-5
- N. N. Khuri, A. Martin, and T. T. Wu, Bound states in n dimensions (especially $n=1$ and $n=2$), Few Body Systems 31 (2002), 83–89.
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- Julian Schwinger, On the bound states of a given potential, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 122–129. MR 129798, DOI 10.1073/pnas.47.1.122
- Barry Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. MR 541149, DOI 10.1007/BFb0064579
- Barry Simon, The bound state of weakly coupled Schrödinger operators in one and two dimensions, Ann. Physics 97 (1976), no. 2, 279–288. MR 404846, DOI 10.1016/0003-4916(76)90038-5
- B. Simon, On the number of bound states of two-body Schrödinger operators: A review, in Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann, Princeton University Press, Princeton, 1976, pp. 305–326.
- M. Klaus, On the bound state of Schrödinger operators in one dimension, Ann. Physics 108 (1977), no. 2, 288–300. MR 503200, DOI 10.1016/0003-4916(77)90015-X
- Roger G. Newton, Bounds on the number of bound states for the Schrödinger equation in one and two dimensions, J. Operator Theory 10 (1983), no. 1, 119–125. MR 715561
- Noriaki Setô, Bargmann’s inequalities in spaces of arbitrary dimension, Publ. Res. Inst. Math. Sci. 9 (1973/74), 429–461. MR 0340846, DOI 10.2977/prims/1195192566
- B. Simon, An introduction to the self-adjointness and spectral analysis of Schrödinger operators in The Schrödinger Equation (W. Thirring and P. Urban, eds.), Acta Phys. Aus. Suppl. 17, Springer, Vienna, 1977, pp. 19–42.
- M. Solomyak, Piecewise-polynomial approximation of functions from $H^l((0,1)^d)$, $2l=d$, and applications to the spectral theory of the Schrödinger operator, Israel J. Math. 86 (1994), no. 1-3, 253–275. MR 1276138, DOI 10.1007/BF02773681
Bibliographic Information
- Mihai Stoiciu
- Affiliation: Department of Mathematics 253-37, California Institute of Technology, Pasadena, California 91125
- Email: mihai@its.caltech.edu
- Received by editor(s): December 17, 2002
- Published electronically: August 28, 2003
- Communicated by: Joseph A. Ball
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1143-1151
- MSC (2000): Primary 35P15, 35J10; Secondary 81Q10
- DOI: https://doi.org/10.1090/S0002-9939-03-07257-5
- MathSciNet review: 2045431