ON GROUP OPERATIONS ON HOMOGENEOUS SPACES

YEVEN ZELENYUK

(Communicated by Alan Dow)

Abstract. It is proved that every countably infinite homogeneous regular space admits a structure of any countably infinite group with continuous left shifts.

It is well known that not all infinite groups admit a non-discrete group topology (see, for example, [1, §9]). However, every infinite group admits a non-discrete zero-dimensional topology with continuous left shifts [3], [4], and every countably infinite group admits a non-discrete zero-dimensional topology with continuous shifts and inversion [6]. It is well known also that not all homogeneous spaces admit a structure of a topological group and even a structure of a group with continuous left shifts (see, for example, [1, §10]). The aim of this note is to prove that every countably infinite homogeneous regular space admits a structure of any countably infinite group with continuous left shifts.

We begin with the Boolean version of this result.

Theorem 1. Let X be a countably infinite homogeneous regular space. Then there is a Boolean group operation $+$ on X with continuous shifts.

To prove Theorem 1 we need the following lemma.

Lemma. Let X be a countably infinite homogeneous regular space and let $x, y \in X$, $x \neq y$. Then there is a clopen neighborhood U of x and a homeomorphism $h : X \to X$ such that $h(x) = y$, $h(U) = X \setminus U$ and $h^2 = id_X$.

Proof. Enumerate X as $\{x_n : n < \omega\}$. Since X is homogeneous, there is a homeomorphism $g_0 : X \to X$ with $g_0(x) = y$. Since X is countable and regular, therefore zero-dimensional, one may choose a clopen neighborhood U_0 of x with $U_0 \cap g_0(U_0) = \emptyset$. Put $X_0 = U_0 \cup g_0(U_0)$ and define $h_0 : X_0 \to X_0$ by

$$h_0(x) =
\begin{cases}
g_0(x) & \text{if } x \in U_0, \\
g_0^{-1}(x) & \text{if } x \in g_0(U_0).
\end{cases}$$

If $X_0 = X$, put $U = U_0$ and $h = h_0$. Otherwise, choose the first element x_{n_1} in the sequence $\{x_n : n < \omega\}$ with $x_{n_1} \notin X_0$ and pick any $y_{n_1} \in X \setminus (X_0 \cup \{x_{n_1}\})$. Let $g_1 : X \to X$ be a homeomorphism with $g_1(x_{n_1}) = y_{n_1}$ and let U_1 be a clopen neighborhood of y_{n_1} with $U_1 \cap g_1(U_1) = \emptyset$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
neighborhood of \(x_{n_1} \) with \(U_1 \cap g_1(U_1) = \emptyset \) and \(U_1 \cup g_1(U_1) \subseteq X \setminus X_0 \). Put \(X_1 = X_0 \cup U_1 \cup g_1(U_1) \) and extend \(h_0 \) to \(h_1 : X_1 \to X_1 \) by

\[
h_1(x) = \begin{cases}
 h_0(x) & \text{if } x \in X_0, \\
 g_1(x) & \text{if } x \in U_1, \\
 g_1^{-1}(x) & \text{if } x \in g_1(U_1).
\end{cases}
\]

If \(X_1 = X \), put \(U = U_0 \cup U_1 \) and \(h = h_1 \). Otherwise, choose the first element \(x_{n_2} \) in the sequence \(\{x_n : n < \omega \} \) with \(x_{n_2} \notin X_1 \), pick any \(y_{n_2} \in X \setminus (X_1 \cup \{x_{n_2}\}) \), and so forth.

If \(X_n = X \) for some \(n \), put \(U = \bigcup_{i \leq n} U_i \) and \(h = h_n \). Otherwise, put \(U = \bigcup_{n < \omega} U_n \) and \(h = \bigcup_{n < \omega} h_n \). \(\square \)

Proof of Theorem 1. We can assume that \(X \) is not discrete. Pick any element \(u \in X \) and enumerate the set \(X \setminus \{u\} \) as \(\{x_n : n < \omega \} \). By the Lemma, we can construct a decreasing sequence \(\{U_n : n < \omega \} \) of clopen neighborhoods of \(u \) with \(U_0 = X \) and a sequence of homeomorphisms \(h_0 : U_n \to U_n \) such that \(h_n(U_{n+1}) = U_n \setminus U_{n+1} \) and \(h_n^2 = \text{id}_{U_n} \). By induction on \(n \), it is easy to verify that for each \(n < \omega \) the subsets \(h_n^0 \cdots h_n^\varepsilon(U_{n+1}) \), where \(\varepsilon \in \{0,1\} \), form a partition of \(X \) and every \(x \in X \) can be uniquely written in the form \(x = h_n^0 \cdots h_n^\varepsilon(y) \), where \(y \in U_{n+1} \). We construct sequences \(\{U_n : n < \omega \} \) and \(\{h_n : n < \omega \} \) satisfying, in addition, the condition \(x_n \in B_n = \{h_n^0 \cdots h_n^\varepsilon(u) : \varepsilon \in \{0,1\}, i \leq n\} \). To see that this can be done, assume that \(x_n \notin B_{n-1} \). Then \(x_n \in h_n^0 \cdots h_n^{\varepsilon_n-1}(y_n) \) for some \(\varepsilon_n \in \{0,1\} \) and \(y_n \in U_n \). Choose \(h_n \) with \(h_n(u) = y_n \).

Now let \(x, y \in X \). By the construction, there exists large enough \(n \) such that \(x \) and \(y \) can be uniquely written in the form \(x = h_n^0 \cdots h_n^\varepsilon(u) \), \(y = h_n^0 \cdots h_n^\delta(u) \). Put \(x + y = h_n^{\varepsilon + \delta} \cdots h_n^\delta(u) \). It is clear that the operation is well defined and that \((X, +) \) is a Boolean group with zero \(u \). We note that for every \(z \in U_{n+1} \), \(x + z = h_n^{\varepsilon + \delta} \cdots h_n^\delta(z) \). To check that the left shifts in \((X, +) \) are continuous, let \(U \) be a neighborhood of \(x \). Choose a neighborhood \(V \) of \(y \) such that \(V \subseteq U_{n+1} \) and \(h_n^{\varepsilon + \delta} \cdots h_n^\delta(V) \subseteq U \). Then \(W = h_n^{\varepsilon + \delta} \cdots h_n^\delta(V) \) is a neighborhood of \(y \) and for every \(z \in V \), \(x + h_n^{\varepsilon + \delta} \cdots h_n^\delta(z) = x + y + z = h_n^{\varepsilon + \delta} \cdots h_n^\delta(z) \in U \); so \(x + W \subseteq U \). \(\square \)

Next we need the Local Isomorphism Theorem. It is close to [5, Theorem 2] (see also [2, Lemma 7.4]).

A space with a group operation is called a left topological group if all left shifts are continuous. A space \(X \) with a partial binary operation \(\cdot \) and a distinguished element \(1 \) is called a local left topological group, if for each element \(x \in X \) there is an open neighborhood \(U_x \) of \(1 \) such that

1. For any \(y \in U_x \), \(x \cdot y \) is defined, \(x \cdot 1 = x \), \(x \cdot U_x \) is an open neighborhood of \(x \), and a mapping \(U_x \ni y \mapsto x \cdot y \in x \cdot U_x \) is a homeomorphism;
2. \((x \cdot y) \cdot z = x \cdot (y \cdot z) \) if \(y \in U_x \), \(z \in U_{x \cdot y} \cap U_y \), \(y \cdot z \in U_x \).

For a local left topological group, from this point on, we write \(x \cdot y \) we mean \(y \in U_x \) and when we write \(x \cdot U \), where \(U \) is a neighborhood of \(1 \), we mean \(U \subseteq U_x \).

A basic example of a local left topological group is an open neighborhood of the identity of a left topological group.

Let \(X \) and \(Y \) be local left topological groups. A map \(f : X \to Y \) is called a local homomorphism if \(f(1_X) = 1_Y \) and for every \(x \in X \) there exists a neighborhood \(U_x \)
of I_X such that $f(zx) = f(x)f(z)$ for all $z \in U_x$. A bijective local homomorphism f is called a local isomorphism if f^{-1} is also a local homomorphism. We observe that every open bijective local homomorphism is a local isomorphism.

Theorem 2. All countably infinite non-discrete regular left topological groups are local isomorphic.

Proof. Let X be the countably infinite Boolean group $\bigoplus \omega \mathbb{Z}_2$ endowed with the direct sum topology, and let Y be an arbitrary countably infinite non-discrete regular left topological group. We shall define a local isomorphism $f : X \to Y$.

Let F be the semigroup of words on the letters 0 and 1 with empty word \emptyset, and let F' be the subsemigroup of F of words including \emptyset, in which the last letter is 1. We define a bijection $X \ni x \mapsto w(x) \in F'$ as follows. If $0 \neq x = (\varepsilon_n)_{n<\omega}$ and $m = \max\{n < \omega : \varepsilon_n = 1\}$, we put $w(x) = \varepsilon_0 \cdots \varepsilon_m$. If $x = 0$, we put $w(x) = \emptyset$.

For every $w \in F$, $|w|$ denotes the length of w. For every $n < \omega$, put $W_n = \{w \in F : |w| = n\}$. Each nonempty $w \in F$ has a unique representation in the form $w = w_1w_2 \cdots w_k$, where $w_l = 0^li^j$, $1 \leq l \leq k$, $i_1, j_k \in \omega$, $j_1, j_2, j_2, \ldots, i_k \in \mathbb{N}$ (if $k = 1$, the requirement is $i_1, j_1 \in \omega$ and $i_1 + j_1 \in \mathbb{N}$). This representation will be called canonical. Words of the form 0^i1^j, where $i, j \in \omega$ and $i + j \in \mathbb{N}$, will be called basic. If a word w is basic or $w = \emptyset$, we put $w' = \emptyset$ and $w^* = w$. Otherwise, if $w = w_1w_2 \cdots w_k$ is the canonical representation, we put $w' = w_1w_2 \cdots w_{k-1}$ and $w^* = 0w_1 + 1w_2 + \cdots + (w_k-1)w_k$.

Enumerate $Y \setminus \{1_Y\}$ as $\{y_n : 0 < n < \omega\}$. We shall construct a clopen $Y(w) \subseteq Y$ and $y(w) \in Y(w)$ for every $w \in F$ such that $Y(\emptyset) = Y$, $y(\emptyset) = 1_Y$ and the following conditions hold for all $n \in \mathbb{N}$:

1. $Y(w_0) \cup Y(w_1) = Y(w)$ and $Y(w_0) \cap Y(w_1) = \emptyset$ for all $w \in W_{n-1}$;
2. $y(w_0) = y(w)$ for all $w \in W_{n-1}$;
3. $Y(w) = y(w')Y(w^*)$ and $y(w) = y(w')y(w^*)$ for all $w \in W_n$;
4. $y_n \in \{y(w) : w \in W_n\}$.

We take as $Y(0)$ a clopen neighborhood of 1_Y such that $y_1 \notin Y(0)$. Put $Y(1) = Y \setminus Y(0)$, $y(0) = 1_Y$ and $y(1) = y_1$.

Suppose that $Y(w)$ and $y(w)$ have already been constructed for all $w \in W_n$ such that conditions (1)–(4) hold.

It is obvious that the subsets $Y(w)$, where $w \in W_n$, form a partition of Y. So, one of them, say $Y(u)$, contains y_{n+1}. For some $z_{n+1} \in Y(u^*)$, $y_{n+1} = y(u^*)z_{n+1}$. If $z_{n+1} = y(u^*)$, we take as $Y(u)^{n+1}$ any clopen neighborhood of 1_Y such that $Y(u)\setminus y(u)Y(0^n+1) \neq \emptyset$ for all basic $w \in W_n$. Then for every basic $w \in W_n$, put $y(w_0) = y(w)$, $Y(w_0) = y(w)Y(0^n+1)$ and $Y(w_1) = Y(w) \setminus Y(w_0)$, and take as $y(w_1)$ any element of $Y(w_0)$. If $z_{n+1} \neq y(u^*)$, we take as $Y(u)^{n+1}$ in addition such that $z_{n+1} \notin y(u^*)Y(0^n+1)$ and put $y(u^*) = z_{n+1}$. For all non-basic $v \in W_{n+1}$, we define $Y(v)$ and $y(v)$ by condition (3). Then $y(v) = y(v')y(v^*) \in y(v')Y(v^*) = Y(v)$ and $y_{n+1} = y(u^*)y(u^*) = y((u^1)^*) = y(1)$. To check conditions (2) and (1), let $w \in W_n$. Then

$$y(w_0) = y((w_0)^*)y((w_0)^*) = y(w)g(0^n+1) = y(w),$$

$$Y(w_0) = y(w)Y(0^n+1) = y(w')y(w^*)Y(0^n+1) = y(w')Y(w^*0),$$

$$Y(w_1) = y((w_1)^*)Y((w_1)^*) = y(w')Y(w^*1),$$
and so
\[
Y(w0) \cup Y(w1) = y(w')[Y(w*0) \cup Y(w*1)] = y(w')Y(w*) = Y(w),
\]
\[
Y(w0) \cap Y(w1) = \emptyset.
\]

After this construction we have obtained the mapping \(F' \ni w \mapsto y(w) \in Y\). It follows from (4), (2) and (1) that it is a bijection. Define the bijection \(f : X \to Y\) by \(f(x) = y(w(x))\). To verify that \(f\) is a local homomorphism, let \(x \in X\), \(w(x) = u\). Take any \(z \in U_{|u|+1}\), where \(U_n = \{(\varepsilon_i)_{i<\omega} \in X : \varepsilon_i = 0\text{ for all } i < n\}\). Then \(w(z) = 0^{|u|+1}v\) and \(w(x + z) = u0v\). It is easy to show by induction on the length of the canonical representations using (3) that \(y(u0v) = y(u)y(0^{|u|+1}v)\).

Therefore, \(f(x + z) = y(u0v) = y(u)y(0^{|u|+1}v) = f(x)f(z)\). To see that \(f\) is a local isomorphism, we note that \(f(U_{n+1}) = Y(0^n)\); so \(f\) is open. \(\square\)

Now we can prove our main result.

Theorem 3. Let \(X\) be a countably infinite homogeneous regular space, and let \(G\) be a countably infinite group. Then there is a group operation \(\ast\) on \(X\) with continuous left shifts such that \((X, \ast)\) is isomorphic to \(G\).

Proof. We may suppose that \(X\) is not discrete. By Theorem 1, there is a Boolean group operation \(+\) on \(X\) with continuous shifts. We endow \(G\) with any non-discrete regular topology with continuous left shifts. By Theorem 2, there is a local isomorphism \(f : (X, +) \to G\) (it even suffices that \(f\) be a bijective local homomorphism). For any \(x, y \in X\), we define \(x \ast y = f^{-1}(f(x)f(y))\). Obviously, \((X, \ast)\) is a group isomorphic to \(G\). Next, given any \(x \in X\), we can choose a neighborhood \(U\) of the identity such that \(f(x + z) = f(x)f(z)\) for all \(z \in U\), and then \(x \ast z = f^{-1}(f(x)f(z)) = f^{-1}(f(x + z)) = x + z\). It follows from this that the left shifts of \((X, \ast)\) are continuous and open at the identity. Consequently, the left shifts of \((X, \ast)\) are continuous. \(\square\)

References

Faculty of Cybernetics, Kyiv Taras Shevchenko University, vul. Glushkova 2, korp. 6, 03680, Kyiv, Ukraine

E-mail address: grishko@i.com.ua

URL: http://www.i.com.ua/~grishko/zelenyuk.html

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use