Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity
HTML articles powered by AMS MathViewer
- by Adimurthi and Massimo Grossi
- Proc. Amer. Math. Soc. 132 (2004), 1013-1019
- DOI: https://doi.org/10.1090/S0002-9939-03-07301-5
- Published electronically: November 10, 2003
- PDF | Request permission
Abstract:
In this paper we give asymptotic estimates of the least energy solution $u_p$ of the functional \begin{equation*} J(u) =\int _\Omega |\nabla u|^2 \quad \text {constrained on the manifold }\int _\Omega |u|^{p+1}=1\end{equation*} as $p$ goes to infinity. Here $\Omega$ is a smooth bounded domain of $\mathbb {R}^2$. Among other results we give a positive answer to a question raised by Chen, Ni, and Zhou (2000) by showing that $\lim \limits _{p\rightarrow \infty }||u_{p}||_{\infty }=\sqrt e$.References
- Adimurthi and Michael Struwe, Global compactness properties of semilinear elliptic equations with critical exponential growth, J. Funct. Anal. 175 (2000), no. 1, 125–167. MR 1774854, DOI 10.1006/jfan.2000.3602
- Haïm Brezis and Frank Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e^u$ in two dimensions, Comm. Partial Differential Equations 16 (1991), no. 8-9, 1223–1253. MR 1132783, DOI 10.1080/03605309108820797
- Wen Xiong Chen and Congming Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), no. 3, 615–622. MR 1121147, DOI 10.1215/S0012-7094-91-06325-8
- G. Chen, W. M. Ni, and J. Zhou, Algorithms and visualization for solutions of nonlinear elliptic equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 10 (2000), 1565–1612.
- K. El Medhi and M. Grossi, Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, preprint.
- Martin Flucher and Juncheng Wei, Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots, Manuscripta Math. 94 (1997), no. 3, 337–346. MR 1485441, DOI 10.1007/BF02677858
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Xiaofeng Ren and Juncheng Wei, On a two-dimensional elliptic problem with large exponent in nonlinearity, Trans. Amer. Math. Soc. 343 (1994), no. 2, 749–763. MR 1232190, DOI 10.1090/S0002-9947-1994-1232190-7
- Xiaofeng Ren and Juncheng Wei, Single-point condensation and least-energy solutions, Proc. Amer. Math. Soc. 124 (1996), no. 1, 111–120. MR 1301045, DOI 10.1090/S0002-9939-96-03156-5
- Richard M. Schoen, On the number of constant scalar curvature metrics in a conformal class, Differential geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 311–320. MR 1173050
Bibliographic Information
- Adimurthi
- Affiliation: T.I.F.R. Centre, P.O. Box 1234, Bangalore 560012, India
- Email: aditi@math.tifrbng.res.in
- Massimo Grossi
- Affiliation: Università di Roma “La Sapienza", P.le Aldo Moro, 2, 00185 Roma, Italy
- Email: grossi@mat.uniroma1.it
- Received by editor(s): September 7, 2002
- Published electronically: November 10, 2003
- Additional Notes: Supported by M.U.R.S.T., project “Variational methods and nonlinear differential equations"
- Communicated by: David S. Tartakoff
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1013-1019
- MSC (2000): Primary 35J20, 35B40
- DOI: https://doi.org/10.1090/S0002-9939-03-07301-5
- MathSciNet review: 2045416