Existence of solutions for semilinear elliptic problems without (PS) condition
HTML articles powered by AMS MathViewer
- by Jianfu Yang
- Proc. Amer. Math. Soc. 132 (2004), 1355-1366
- DOI: https://doi.org/10.1090/S0002-9939-03-07088-6
- Published electronically: December 12, 2003
- PDF | Request permission
Abstract:
We establish an existence result for semilinear elliptic problems with the associated functional not satisfying the Palais-Smale condition. The nonlinearity of our problem does not satisfy the Ambrosetti-Rabinowitz condition.References
- Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381. MR 0370183, DOI 10.1016/0022-1236(73)90051-7
- A. Bahri and P.-L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math. 45 (1992), no. 9, 1205–1215. MR 1177482, DOI 10.1002/cpa.3160450908
- H. Berestycki, I. Capuzzo-Dolcetta, and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal. 4 (1994), no. 1, 59–78. MR 1321809, DOI 10.12775/TMNA.1994.023
- H. Brézis and R. E. L. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations 2 (1977), no. 6, 601–614. MR 509489, DOI 10.1080/03605307708820041
- Kung-ching Chang, Infinite-dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications, vol. 6, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1196690, DOI 10.1007/978-1-4612-0385-8
- D. G. Costa and C. A. Magalhães, A variational approach to subquadratic perturbations of elliptic systems, J. Differential Equations 111 (1994), no. 1, 103–122. MR 1280617, DOI 10.1006/jdeq.1994.1077
- D. G. de Figueiredo, P.-L. Lions, and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. (9) 61 (1982), no. 1, 41–63. MR 664341
- D. G. de Figueiredo and Jianfu Yang, On a semilinear elliptic problem without (PS) condition, J. Differential Equations 187 (2003), 412 - 428.
- Nassif Ghoussoub, Duality and perturbation methods in critical point theory, Cambridge Tracts in Mathematics, vol. 107, Cambridge University Press, Cambridge, 1993. With appendices by David Robinson. MR 1251958, DOI 10.1017/CBO9780511551703
- B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), no. 8, 883–901. MR 619749, DOI 10.1080/03605308108820196
- B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525–598. MR 615628, DOI 10.1002/cpa.3160340406
- Helmut Hofer, A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem, J. London Math. Soc. (2) 31 (1985), no. 3, 566–570. MR 812787, DOI 10.1112/jlms/s2-31.3.566
- Louis Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\textbf {R}^N$, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 787–809. MR 1718530, DOI 10.1017/S0308210500013147
- A. Harrabi, S. Rebhi, and A. Selmi, Solutions of superlinear elliptic equations and their Morse indices. I, II, Duke Math. J. 94 (1998), no. 1, 141–157, 159–179. MR 1635912, DOI 10.1215/S0012-7094-98-09407-8
- Miguel Ramos and Luis Sanchez, Homotopical linking and Morse index estimates in min-max theorems, Manuscripta Math. 87 (1995), no. 3, 269–284. MR 1340347, DOI 10.1007/BF02570474
- Miguel Ramos, Susanna Terracini, and Christophe Troestler, Superlinear indefinite elliptic problems and Pohožaev type identities, J. Funct. Anal. 159 (1998), no. 2, 596–628. MR 1658097, DOI 10.1006/jfan.1998.3332
- Michael Struwe, Variational methods, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 34, Springer-Verlag, Berlin, 1996. Applications to nonlinear partial differential equations and Hamiltonian systems. MR 1411681, DOI 10.1007/978-3-662-03212-1
- Wenming Zou, Variant fountain theorems and their applications, Manuscripta Math. 104 (2001), no. 3, 343–358. MR 1828880, DOI 10.1007/s002290170032
Bibliographic Information
- Jianfu Yang
- Affiliation: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, P.O. Box 71010, Wuhan 430071, Peoples Republic of China
- Email: jfyang@wipm.ac.cn
- Received by editor(s): May 4, 2002
- Received by editor(s) in revised form: September 18, 2002
- Published electronically: December 12, 2003
- Communicated by: David S. Tartakoff
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1355-1366
- MSC (2000): Primary 35J20, 35J25, 35J60
- DOI: https://doi.org/10.1090/S0002-9939-03-07088-6
- MathSciNet review: 2053340