LOCAL AUTOMORPHISMS AND DERIVATIONS ON M_n

SANG OG KIM AND JU SEON KIM

(Communicated by Joseph A. Ball)

Abstract. The aim of this note is to give a short proof that 2-local derivations on M_n, the $n \times n$ matrix algebra over the complex numbers are derivations and to give a shorter proof that 2-local *-automorphisms on M_n are *-automorphisms.

A mapping ϕ of an algebra A into itself is called a local automorphism (respectively, local derivation) if for every $A \in A$ there exists an automorphism (respectively, local derivation) ϕ_A of A, depending on A, such that $\phi(A) = \phi_A(A)$. These notions were introduced by Kadison [Kad] and Larson and Sourour [LaSo]. In fact, their definitions were stronger. They have assumed that these mappings are also linear. Larson and Sourour proved that every local derivation on $B(X)$, the algebra of all bounded linear operators on a Banach space X, is a derivation, and provided that X is infinite dimensional, every surjective linear local automorphism of $B(X)$ is an automorphism. In [BrSe], they proved that the surjectivity assumption in the last result can be dropped if X is a separable Hilbert space.

It is easy to see that if we drop the assumption of linearity of the local maps, then the corresponding statements are no longer true. However, in [KoSl], they obtained the following result: If A is a unital Banach algebra and if $\phi : A \to \mathbb{C}$ is a map (no linearity is assumed) having the property that $\phi(I) = 1$ and for every $A, B \in A$, there exists a multiplicative linear functional $\phi_{A,B}$ on A such that $\phi(A) = \phi_{A,B}(A)$ and $\phi(B) = \phi_{A,B}(B)$, then ϕ is linear and multiplicative.

Motivated by the above considerations, Šemrl [Sem] introduced the following definition.

Definition. Let A be an algebra. A mapping $\phi : A \to A$ is called a 2-local automorphism (respectively, 2-local derivation) if for every $A, B \in A$ there is an automorphism (respectively, derivation) $\phi_{A,B} : A \to A$, depending on A and B, such that $\phi(A) = \phi_{A,B}(A)$ and $\phi(B) = \phi_{A,B}(B)$.

They showed the following result.

Theorem 1 ([Sem]). Let H be an infinite-dimensional separable Hilbert space, and let $B(H)$ be the algebra of all bounded linear operators on H. Then every 2-local automorphism $\phi : B(H) \to B(H)$ (no linearity, surjectivity or continuity of ϕ is
assumed) is an automorphism and every 2-local derivation \(\theta : B(H) \to B(H) \) (no linearity or continuity of \(\theta \) is assumed) is a derivation.

In [Sem, Remark] they say that they get the same results in the case that \(H \) is finite dimensional by a long proof involving tedious computations. We found very recently that Molnár [Mol2] gave a short proof that every 2-local automorphism on \(M_n(\mathbb{C}) \) is an automorphism. It is the aim of this note to make a short proof that 2-local derivations on \(M_n(\mathbb{C}) \) are derivations and to make the proof shorter in the case of 2-local *-automorphisms (its definition is self-explanatory, i.e., the \(\phi_{A,B} \) is a *-automorphism for every \(A \) and \(B \)). Note that the proof of the following Theorem 2 is similar to that in [Mol1].

Theorem 2. Let \(M_n \) be the \(n \times n \) matrix algebra over \(\mathbb{C} \) and \(\phi : M_n \to M_n \) a 2-local *-automorphism. Then \(\phi \) is a *-automorphism.

Proof. By the well-known result that every *-automorphism of \(M_n \) is of the form \(A \mapsto UAU^* \) for some unitary \(U \) in \(M_n \), for every \(A,B \in M_n \) there is a unitary \(U \) in \(M_n \) such that

\[
\phi(A) = UAU^* \quad \text{and} \quad \phi(B) = UBU^*.
\]

Then if we let \(\text{tr} \) be the usual trace functional, we have

\[
\text{tr}(\phi(A)\phi(B)^*) = \text{tr}(AB^*).
\]

Then for any \(C \in M_n \),

\[
\text{tr}[(\phi(A + B) - \phi(A) - \phi(B))\phi(C)^*] = \text{tr}[(A + B - A - B)C^*] = 0
\]

by the linearity of \(\text{tr} \), and then we obtain that

\[
\text{tr}[(\phi(A + B) - \phi(A) - \phi(B))(\phi(A + B) - \phi(A) - \phi(B))^*] = 0.
\]

Consequently, it follows that \(\phi \) is additive. Let \(A \) be an element of \(M_n \) and let \(\lambda \) be any scalar. If we use the 2-locality of \(\phi \) to the elements \(A \) and \(\lambda A \), we have

\[
\phi(\lambda A) = \phi_{A,\lambda A}(\lambda A) = \lambda\phi_{A,\lambda A}(A) = \lambda\phi(A).
\]

Then \(\phi \) is homogeneous, and hence \(\phi \) is a linear map. Since the set of eigenvalues of \(\phi(A) \) according to multiplicity is the same as that of \(A \in M_n \) and \(\phi(A^*) = \phi_{A,A^*}(A^*) = \phi_{A,A^*}(A)^* = \phi(A)^* \), there exists by [MaMo, Theorem 4] a unitary \(U \in M_n \) such that \(\phi \) is either of the form

\[
\phi(A) = UAU^* \quad (A \in M_n)
\]

or of the form

\[
\phi(A) = U A^1 U^* \quad (A \in M_n).
\]

Suppose, on the contrary, that \(\phi(A) = U A^1 U^* \) for all \(A \in M_n \). Take two matrices \(A \) and \(B \) in \(M_n \) such that \(AB \neq 0 \) and \(BA = 0 \). Then

\[
0 \neq \phi_{A,B}(AB) = \phi(A)\phi(B) = U A^1 U^* U B^1 U^* = U(BA)^1 U^* = 0.
\]

This shows that \(\phi(A) = U A^1 U^*(A \in M_n) \), completing the proof.

Now we consider 2-local derivations on \(M_n \). We have to mention that the idea for the proof of the following Theorem 3 comes from that of [Sem].

Theorem 3. Let \(M_n \) be the \(n \times n \) matrix algebra over \(\mathbb{C} \) and \(\phi : M_n \to M_n \) a 2-local derivation. Then \(\phi \) is a derivation.
Proof. Let \(\{e_1, e_2, \ldots, e_n\} \) be the standard basis for \(\mathbb{C}^n \). We define two matrices \(A, N \in M_n \) by

\[
A = \begin{pmatrix}
\frac{1}{2} & 0 & \cdots & 0 \\
0 & \frac{1}{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{2}
\end{pmatrix}, \quad N = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{pmatrix}.
\]

It is easy to see that \(T \in M_n \) commutes with \(A \) if and only if it is diagonal, and if \(U \) commutes with \(N \), then \(U \) is of the form

\[
U = \begin{pmatrix}
\mu_1 & \mu_2 & \mu_3 & \cdots & \mu_n \\
0 & \mu_1 & \mu_2 & \cdots & \mu_{n-1} \\
0 & 0 & \mu_1 & \cdots & \mu_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mu_1 & \mu_2 \\
0 & 0 & \cdots & \mu_1 & \mu_1
\end{pmatrix}.
\]

Replacing \(\phi \) by \(\phi - \phi_A, N \), if necessary, we can assume that \(\phi(A) = \phi(N) = 0 \). Every derivation on \(M_n \) is inner. It follows that for every \(T \in M_n \) there exist diagonal \(D \) and \(U \) of the above form, depending on \(T \), such that

\[
\phi(T) = TD - DT = TU - UT.
\]

Let \(\{E_{ij}\}_{i,j=1, \ldots, n} \) be the system of matrix units of \(M_n \). Then for any fixed \(i \) and \(j \), we have \(\phi(E_{ij}) = E_{ij}D - DE_{ij} = E_{ij}U - UE_{ij} \) for some \(D = \text{diag}(\lambda_1, \ldots, \lambda_n) \) and \(U \) of the above form. Since \(E_{ij}D - DE_{ij} = (\lambda_j - \lambda_i)E_{ij} \) and \(E_{ij}U - UE_{ij} \) has 0 as \((i, j)\)-entry, it follows that \(\phi(E_{ij}) = 0 \). Noting that \(E_{ij} \) is the rank one operator \(e_i \otimes e_j \), we then have for any \(T \in M_n \),

\[
E_{ij}\phi(T)E_{ij} = \phi_{E_{ij}, T}(E_{ij}TE_{ij}) = (Te_i, e_j)\phi_{E_{ij}, T}(E_{ij}) = (Te_i, e_j)\phi(E_{ij}) = 0.
\]

From this equation it follows that \((\phi(T)e_i, e_j)E_{ij} = 0 \) and hence \(\phi(T) = 0 \), completing the proof.

References

Department of Mathematics, Hallym University, Chuncheon 200-702, Korea

E-mail address: sokim@hallym.ac.kr

Department of Mathematics Education, Seoul National University, Seoul, 151-742, Korea