Numerical radius distance-preserving maps on $\mathcal {B}(H)$
HTML articles powered by AMS MathViewer
- by Zhaofang Bai and Jinchuan Hou
- Proc. Amer. Math. Soc. 132 (2004), 1453-1461
- DOI: https://doi.org/10.1090/S0002-9939-03-07190-9
- Published electronically: September 30, 2003
- PDF | Request permission
Abstract:
Let $H$ be a complex Hilbert space, $\mathcal {B}(H)$ be the algebra of all bounded linear operators on $H$, $\mathcal {H}(H)$ be the subset of all selfadjoint operators in $\mathcal {B}(H)$ and $\mathcal {V}=\mathcal {B}(H)$ or ${\mathcal H}(H)$. Denote by $w(A)$ the numerical radius of $A\in \mathcal {B}(H)$. We characterize surjective maps $\Phi :{\mathcal V}\rightarrow {\mathcal V}$ that satisfy $w(\Phi (A)-\Phi (B))=w(A-B)$ for all $A,B\in {\mathcal V}$ without the linearity assumption.References
- Jor-Ting Chan, Numerical radius preserving operators on $B(H)$, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1437–1439. MR 1231293, DOI 10.1090/S0002-9939-1995-1231293-7
- P. A. Fillmore, Sums of operators with square zero, Acta Sci. Math. (Szeged) 28 (1967), 285–288. MR 221301
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Graduate Studies in Mathematics, vol. 15, American Mathematical Society, Providence, RI, 1997. Elementary theory; Reprint of the 1983 original. MR 1468229, DOI 10.1090/gsm/015
- C. K. Li, L. Rodman, and P. Šemrl, Linear maps on selfadjoint operators preserving invertibility, positive definiteness, numerical range, Canad. Math. Bull. 46 (2003), 216-228.
- Chi-Kwong Li and Peter emrl, Numerical radius isometries, Linear Multilinear Algebra 50 (2002), no. 4, 307–314. MR 1936954, DOI 10.1080/03081080290025480
- S. Mazur and S. Ulam, Sur les transformations isométriques d$^{\prime }$espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946-948.
- Matjaž Omladič, On operators preserving the numerical range, Linear Algebra Appl. 134 (1990), 31–51. MR 1060008, DOI 10.1016/0024-3795(90)90004-V
- Zhe-Xian Wan, Geometry of matrices, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. In memory of Professor L. K. Hua (1910–1985). MR 1409610, DOI 10.1142/9789812830234
Bibliographic Information
- Zhaofang Bai
- Affiliation: School of Science, Xi$^{\prime }$an Jiaotong University, Xi$^{\prime }$an, 710049, P. R. China; Department of Mathematics, Shanxi Teachers University, Linfen, 041004, P. R. China
- Jinchuan Hou
- Affiliation: Department of Mathematics, Shanxi Teachers University, Linfen, 041004, P. R. China; Department of Mathematics, Shanxi University, Taiyuan, 030000, P. R. China
- Email: jhou@dns.sxtu.edu.cn
- Received by editor(s): September 27, 2002
- Received by editor(s) in revised form: January 11, 2003
- Published electronically: September 30, 2003
- Additional Notes: This work was supported partially by NNSFC and PNSFS
- Communicated by: Joseph A. Ball
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1453-1461
- MSC (2000): Primary 47H20, 47B49; Secondary 47A12
- DOI: https://doi.org/10.1090/S0002-9939-03-07190-9
- MathSciNet review: 2053353