A fixed point theorem in partially ordered sets and some applications to matrix equations
HTML articles powered by AMS MathViewer
- by André C. M. Ran and Martine C. B. Reurings
- Proc. Amer. Math. Soc. 132 (2004), 1435-1443
- DOI: https://doi.org/10.1090/S0002-9939-03-07220-4
- Published electronically: September 18, 2003
- PDF | Request permission
Abstract:
An analogue of Banach’s fixed point theorem in partially ordered sets is proved in this paper, and several applications to linear and nonlinear matrix equations are discussed.References
- Anders Björner, Order-reversing maps and unique fixed points in complete lattices, Algebra Universalis 12 (1981), no. 3, 402–403. MR 624306, DOI 10.1007/BF02483901
- Dunham Jackson, A class of orthogonal functions on plane curves, Ann. of Math. (2) 40 (1939), 521–532. MR 80, DOI 10.2307/1968936
- Salah M. El-Sayed and André C. M. Ran, On an iteration method for solving a class of nonlinear matrix equations, SIAM J. Matrix Anal. Appl. 23 (2001/02), no. 3, 632–645. MR 1896810, DOI 10.1137/S0895479899345571
- Israel Gohberg and Seymour Goldberg, Basic operator theory, Birkhäuser, Boston, Mass., 1981. MR 632943
- Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. MR 832183, DOI 10.1017/CBO9780511810817
- Peter Lancaster and Miron Tismenetsky, The theory of matrices, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1985. MR 792300
- M. C. B. Reurings and A. C. M. Ran. The Symmetric Linear Matrix Equation, Electronic Journal of Linear Algebra 9 (2002), 93-107.
- M. C. B. Reurings and A. C. M. Ran, A nonlinear matrix equation connected to interpolation theory. Linear Algebra and its Applications, to appear.
- P. Rózsa, Lineare Matrizengleichungen und Kroneckersche Produkte, Z. Angew. Math. Mech. 58 (1978), no. 7, T395–T397 (German). MR 506346
- L. A. Sakhnovich, Interpolation theory and its applications, Mathematics and its Applications, vol. 428, Kluwer Academic Publishers, Dordrecht, 1997. MR 1631843, DOI 10.1007/978-94-009-0059-2
- Hans Schneider, Positive operators and an inertia theorem, Numer. Math. 7 (1965), 11–17. MR 173678, DOI 10.1007/BF01397969
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
Bibliographic Information
- André C. M. Ran
- Affiliation: Afdeling Wiskunde, Faculteit der Exacte Wetenschappen. Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
- Email: ran@cs.vu.nl
- Martine C. B. Reurings
- Affiliation: Afdeling Wiskunde, Faculteit der Exacte Wetenschappen. Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
- Email: mcreurin@cs.vu.nl
- Received by editor(s): June 19, 2002
- Received by editor(s) in revised form: January 8, 2003
- Published electronically: September 18, 2003
- Communicated by: Joseph A. Ball
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1435-1443
- MSC (2000): Primary 47H10; Secondary 15A24, 54H25
- DOI: https://doi.org/10.1090/S0002-9939-03-07220-4
- MathSciNet review: 2053350