Multilinear differential operators on modular forms
HTML articles powered by AMS MathViewer
- by Min Ho Lee
- Proc. Amer. Math. Soc. 132 (2004), 1267-1277
- DOI: https://doi.org/10.1090/S0002-9939-03-07324-6
- Published electronically: December 12, 2003
- PDF | Request permission
Abstract:
We construct multilinear differential operators on modular forms and prove that they are essentially unique. We also discuss certain homogeneous polynomials associated to such differential operators as well as some related multilinear differential operators that do not produce modular forms.References
- YoungJu Choie, Multilinear operators on Siegel modular forms of genus 1 and 2, J. Math. Anal. Appl. 232 (1999), no. 1, 34–44. MR 1683034, DOI 10.1006/jmaa.1998.6237
- YoungJu Choie and Wolfgang Eholzer, Rankin-Cohen operators for Jacobi and Siegel forms, J. Number Theory 68 (1998), no. 2, 160–177. MR 1605899, DOI 10.1006/jnth.1997.2203
- Henri Cohen, Sums involving the values at negative integers of $L$-functions of quadratic characters, Math. Ann. 217 (1975), no. 3, 271–285. MR 382192, DOI 10.1007/BF01436180
- Paula Beazley Cohen, Yuri Manin, and Don Zagier, Automorphic pseudodifferential operators, Algebraic aspects of integrable systems, Progr. Nonlinear Differential Equations Appl., vol. 26, Birkhäuser Boston, Boston, MA, 1997, pp. 17–47. MR 1418868
- Wolfgang Eholzer and Tomoyoshi Ibukiyama, Rankin-Cohen type differential operators for Siegel modular forms, Internat. J. Math. 9 (1998), no. 4, 443–463. MR 1635181, DOI 10.1142/S0129167X98000191
- Min Ho Lee, Hilbert modular pseudodifferential operators, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3151–3160. MR 1844987, DOI 10.1090/S0002-9939-01-06117-2
- Peter J. Olver, Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995. MR 1337276, DOI 10.1017/CBO9780511609565
- Peter J. Olver, Classical invariant theory, London Mathematical Society Student Texts, vol. 44, Cambridge University Press, Cambridge, 1999. MR 1694364, DOI 10.1017/CBO9780511623660
- Peter J. Olver and Jan A. Sanders, Transvectants, modular forms, and the Heisenberg algebra, Adv. in Appl. Math. 25 (2000), no. 3, 252–283. MR 1783553, DOI 10.1006/aama.2000.0700
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Bruno Schoeneberg, Elliptic modular functions: an introduction, Die Grundlehren der mathematischen Wissenschaften, Band 203, Springer-Verlag, New York-Heidelberg, 1974. Translated from the German by J. R. Smart and E. A. Schwandt. MR 0412107
- André Unterberger, Quantization and non-holomorphic modular forms, Lecture Notes in Mathematics, vol. 1742, Springer-Verlag, Berlin, 2000. MR 1783191, DOI 10.1007/BFb0104036
- Don Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), no. 1, 57–75. K. G. Ramanathan memorial issue. MR 1280058, DOI 10.1007/BF02830874
Bibliographic Information
- Min Ho Lee
- Affiliation: Department of Mathematics, University of Northern Iowa, Cedar Falls, Iowa 50614
- Email: lee@math.uni.edu
- Received by editor(s): January 15, 2003
- Published electronically: December 12, 2003
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1267-1277
- MSC (2000): Primary 11F11, 11F27
- DOI: https://doi.org/10.1090/S0002-9939-03-07324-6
- MathSciNet review: 2053330