Contact 3-manifolds with infinitely many Stein fillings
HTML articles powered by AMS MathViewer
- by Burak Ozbagci and András I. Stipsicz
- Proc. Amer. Math. Soc. 132 (2004), 1549-1558
- DOI: https://doi.org/10.1090/S0002-9939-03-07328-3
- Published electronically: December 19, 2003
- PDF | Request permission
Abstract:
Infinitely many contact 3-manifolds each admitting infinitely many pairwise non-diffeomorphic Stein fillings are constructed. We use Lefschetz fibrations in our constructions and compute their first homologies to distinguish the fillings.References
- B. Aebischer, M. Borer, M. Kälin, Ch. Leuenberger, and H. M. Reimann, Symplectic geometry, Progress in Mathematics, vol. 124, Birkhäuser Verlag, Basel, 1994. An introduction based on the seminar in Bern, 1992. MR 1296462, DOI 10.1007/978-3-0348-7512-7
- I. M. Kamenetzky, Sur l’interpolation au moyen des dérivées et sur les procédés d’interpolation correspondants. I, C. R. (Doklady) Acad. Sci. URSS (N.S.) 25 (1939), 356–358 (French). MR 0002003
- Selman Akbulut and Burak Ozbagci, On the topology of compact Stein surfaces, Int. Math. Res. Not. 15 (2002), 769–782. MR 1891172, DOI 10.1155/S1073792802108105
- Yakov Eliashberg, Filling by holomorphic discs and its applications, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp. 45–67. MR 1171908
- Yakov Eliashberg, Topological characterization of Stein manifolds of dimension $>2$, Internat. J. Math. 1 (1990), no. 1, 29–46. MR 1044658, DOI 10.1142/S0129167X90000034
- J. Etnyre, Introductory lectures on contact geometry, preprint (arXiv: math.SG/0111118).
- John B. Etnyre and Ko Honda, On symplectic cobordisms, Math. Ann. 323 (2002), no. 1, 31–39. MR 1906906, DOI 10.1007/s002080100292
- David T. Gay, Explicit concave fillings of contact three-manifolds, Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 3, 431–441. MR 1919715, DOI 10.1017/S0305004102006291
- E. Giroux, Lecture at Oberwolfach, 2001. (See also: http://www.math.uga.edu/$\ \tilde {} \$topology/ giroux.pdf)
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327, DOI 10.1090/gsm/020
- Ko Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000), 309–368. MR 1786111, DOI 10.2140/gt.2000.4.309
- Mustafa Korkmaz, Noncomplex smooth 4-manifolds with Lefschetz fibrations, Internat. Math. Res. Notices 3 (2001), 115–128. MR 1810689, DOI 10.1155/S107379280100006X
- P. Lisca, On lens spaces and their symplectic fillings, preprint (arXiv: math.SG/0203006).
- Andrea Loi and Riccardo Piergallini, Compact Stein surfaces with boundary as branched covers of $B^4$, Invent. Math. 143 (2001), no. 2, 325–348. MR 1835390, DOI 10.1007/s002220000106
- J. Horn, Über eine hypergeometrische Funktion zweier Veränderlichen, Monatsh. Math. Phys. 47 (1939), 359–379 (German). MR 91, DOI 10.1007/BF01695508
- H. Ohta and K. Ono Simple singularities and symplectic fillings, preprint 2002.
- H. Ohta and K. Ono Symplectic fillings of the link of simple elliptic singularities, preprint 2002.
- Ivan Smith, Geometric monodromy and the hyperbolic disc, Q. J. Math. 52 (2001), no. 2, 217–228. MR 1838364, DOI 10.1093/qjmath/52.2.217
- Ivan Smith, Torus fibrations on symplectic four-manifolds, Turkish J. Math. 25 (2001), no. 1, 69–95. MR 1829080
- I. M. Kamenetzky, Sur l’interpolation au moyen des dérivées et sur les procédés d’interpolation correspondants. I, C. R. (Doklady) Acad. Sci. URSS (N.S.) 25 (1939), 356–358 (French). MR 0002003
- W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975), 345–347. MR 375366, DOI 10.1090/S0002-9939-1975-0375366-7
- Ichiro Torisu, Convex contact structures and fibered links in 3-manifolds, Internat. Math. Res. Notices 9 (2000), 441–454. MR 1756943, DOI 10.1155/S1073792800000246
Bibliographic Information
- Burak Ozbagci
- Affiliation: College of Arts and Sciences, Koc University, Rumelifeneri Yolu 34450, Sariyer, Istanbul, Turkey
- MR Author ID: 643774
- ORCID: 0000-0002-9758-1045
- Email: bozbagci@ku.edu.tr
- András I. Stipsicz
- Affiliation: A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary and Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- MR Author ID: 346634
- Email: stipsicz@math-inst.hu, stipsicz@math.princeton.edu
- Received by editor(s): April 15, 2002
- Published electronically: December 19, 2003
- Communicated by: Ronald A. Fintushel
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1549-1558
- MSC (2000): Primary 57R57, 57R17
- DOI: https://doi.org/10.1090/S0002-9939-03-07328-3
- MathSciNet review: 2053364