Stable minimal surfaces in $\textbf {R}^4$ with degenerate Gauss map
HTML articles powered by AMS MathViewer
- by Toshihiro Shoda
- Proc. Amer. Math. Soc. 132 (2004), 1285-1293
- DOI: https://doi.org/10.1090/S0002-9939-03-07332-5
- Published electronically: December 19, 2003
- PDF | Request permission
Abstract:
A complete oriented stable minimal surface in $\textbf {R}^3$ is a plane, but in $\textbf {R}^4$, there are many non-flat examples such as holomorphic curves. The Gauss map plays an important role in the theory of minimal surfaces. In this paper, we prove that a complete oriented stable minimal surface in $\textbf {R}^4$ with $\alpha$-degenerate Gauss map (for $\alpha > 1/4$) is a plane.References
- J. L. Barbosa and M. do Carmo, On the size of a stable minimal surface in $R^{3}$, Amer. J. Math. 98 (1976), no. 2, 515–528. MR 413172, DOI 10.2307/2373899
- M. do Carmo and C. K. Peng, Stable complete minimal surfaces in $\textbf {R}^{3}$ are planes, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 903–906. MR 546314, DOI 10.1090/S0273-0979-1979-14689-5
- Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in $3$-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211. MR 562550, DOI 10.1002/cpa.3160330206
- H. Blaine Lawson Jr., Lectures on minimal submanifolds. Vol. I, Monografías de Matemática [Mathematical Monographs], vol. 14, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1977. MR 527121
- David A. Hoffman and Robert Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc. 28 (1980), no. 236, iii+105. MR 587748, DOI 10.1090/memo/0236
- Mario J. Micallef, Stable minimal surfaces in Euclidean space, J. Differential Geom. 19 (1984), no. 1, 57–84. MR 739782
- W. Wirtinger, Eine determinanteindentit$\ddot {a}$t und ihre anwendung auf analytische gebilde und Hermitesche massbestimmung. Monatsh. Math. Physik 44 (1936), 343–365.
Bibliographic Information
- Toshihiro Shoda
- Affiliation: Department of Mathematics, Tokyo Institute of Technology, Ohokayama, Meguro, Tokyo, 152-8551, Japan
- Email: tshoda@math.titech.ac.jp
- Received by editor(s): March 6, 2000
- Published electronically: December 19, 2003
- Communicated by: Bennett Chow
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1285-1293
- MSC (2000): Primary 49Q05, 53A10
- DOI: https://doi.org/10.1090/S0002-9939-03-07332-5
- MathSciNet review: 2053332