THE NORM OF A SYMMETRIC ELEMENTARY OPERATOR

BOJAN MAGAJNA

(Communicated by Joseph A. Ball)

Abstract. The norm of the operator $x \mapsto a^*xb + b^*xa$ on $A = \mathcal{B}(\mathcal{H})$ (or on any prime C*-algebra A) is computed for all $a, b \in A$ and is shown to be equal to the completely bounded norm.

1. Introduction

Given a C*-algebra A, an operator on A of the form

$$T : A \to A, \quad Tx = \sum_{j=1}^{n} a_j b_j \ (x \in A),$$

where $a_j, b_j \in A$ are fixed, is called an elementary operator and the smallest n for which T can be expressed in such a form is the length of T. Sometimes the norm of such an operator is equal to the completely bounded norm, hence, to the Haagerup norm of the corresponding tensor $\sum a_i \otimes b_i$ (see [10] and [5]), but in general there is no simple formula known for computing the norm of an elementary operator even if $A = \mathcal{B}(\mathcal{H})$, the algebra of all bounded operators on a complex Hilbert space \mathcal{H} (see [5] for a survey). Although the case of generalized derivations $(x \mapsto ax + xb)$ on $\mathcal{B}(\mathcal{H})$ was already settled by Stampfli [13] more than thirty years ago (see [2] for more), a slightly more general operator

$$T_{a,b} : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}), \quad T_{a,b}x = axb + bxa$$

still presents a problem. Contrary to what one might expect from automatic complete positivity of positive elementary operators of length two (see [14] and the references there) by an analogy, the norm of $T_{a,b}$ can be different from the completely bounded norm. It was conjectured by Mathieu [7] that $\|T_{a,b}\| \geq \|a\|\|b\|$ for all $a, b \in \mathcal{B}(\mathcal{H})$, and if a and b are selfadjoint, this was confirmed by Stacho and Zalar [12], but for general a, b this is still open and the best estimate known seems to be the one in [14].

In this note we shall deduce a formula for the norm of the operator $T_{a,b}$ when a and b are selfadjoint. (The restriction $T_{a,b}|\mathcal{B}(\mathcal{H})_{sa}$ is a special case of the Jacobson-McCrimmon operator.) More generally, we shall prove the following.
Theorem 1.1. For all $a, b \in B(\mathcal{H})$ the norm of the operator
\[S_{a,b} : B(\mathcal{H}) \to B(\mathcal{H}), \quad S_{a,b}x = a^*xb + b^*xa \]
is equal to the norm of its restriction to the space $B(\mathcal{H})_{sa}$ of selfadjoint operators and is given by
\[\|S_{a,b}\| = \inf \{ \|pa^*a + rb^*b - qi(a^*b - b^*a)\| : p, q, r \in \mathbb{R}, \; p, r > 0, \; pr - q^2 = 1 \}. \]
Furthermore, $\|S_{a,b}\| = \|S_{a,b}\|_{cb}$, the completely bounded norm of $S_{a,b}$.

We remark that in the case $S_{a,b}$ acts on the space $B(\mathcal{H})$ of all conjugate-linear operators on \mathcal{H} instead of $B(\mathcal{H})$, the norm of $S_{a,b}$ was shown in [6] to be equal to $\inf_{t > 0} \|ta^*a + \frac{1}{t}b^*b\|$; but it was also shown that this simple formula does not hold for $S_{a,b}$ acting on $B(\mathcal{H})$ if $\dim \mathcal{H} > 2$, even if a and b are selfadjoint. Although there are some parallels between the case of $B(\mathcal{H})$ studied in [6] and the proof of Theorem 1.1 for $B(\mathcal{H})$ given below, the case of $B(\mathcal{H})$ studied here is technically more demanding and perhaps more interesting, admitting an extension (at least) to prime C^*-algebras. To motivate the formula in Theorem 1.1, we shall first prove in Theorem 2.2 another, more straightforward, formula for the norm of $S_{a,b}|B(\mathcal{H})_{sa}$ which, however, does not immediately imply the equality of the usual and the completely bounded norm of $S_{a,b}$. Since the formula in Theorem 1.1 is not very simple for computational purposes, we shall deduce a simpler estimate for the norm of $S_{a,b}$ in Corollary 2.8, which contains the above-mentioned result of [12] as a special case.

We refer to [1] and [9] for the definition of the completely bounded norm and the Haagerup norm needed only at the end of this paper.

2. The norm of $S_{a,b}$

Lemma 2.1. For all vectors $\xi, \eta, \sigma, \zeta \in \mathcal{H}$ the trace-norm of the operator $\rho = \xi \otimes \eta + \sigma \otimes \zeta$ satisfies
\[\|\rho\|_1 = \|\xi\|^2\|\eta\|^2 + \|\sigma\|^2\|\zeta\|^2 + 2\text{Re}(\langle \xi, \sigma \rangle \langle \zeta, \eta \rangle) + 2\|\xi \wedge \sigma\|\|\eta \wedge \zeta\|, \]
where we use the abbreviation $\|\xi \wedge \sigma\| := \sqrt{\|\xi\|^2\|\sigma\|^2 - |\langle \xi, \sigma \rangle|^2}$.

Proof. We may assume that η and ζ are linearly independent (the degenerate case then follows by continuity). Then relative to the basis $\{\eta, \zeta\}$ of $\mathcal{K} = \text{span}\{\eta, \zeta\}$ the restriction of $\rho^*\rho$ to \mathcal{K} is represented by the matrix
\[\begin{bmatrix}
\|\xi\|^2\|\eta\|^2 + \langle \sigma, \xi \rangle \langle \eta, \zeta \rangle & \|\xi\|^2\langle \zeta, \eta \rangle + \|\zeta\|^2\langle \sigma, \xi \rangle \\
\|\eta\|^2\langle \xi, \sigma \rangle + \|\sigma\|^2\langle \eta, \zeta \rangle & \langle \xi, \sigma \rangle \langle \eta, \zeta \rangle + \|\sigma\|^2\|\zeta\|^2
\end{bmatrix}, \]
whose trace and determinant are
\[t = \|\xi\|^2\|\eta\|^2 + \|\sigma\|^2\|\zeta\|^2 + 2\text{Re}(\langle \sigma, \xi \rangle \langle \eta, \zeta \rangle) \]
and
\[d = \|\xi \wedge \sigma\|^2\|\eta \wedge \zeta\|^2. \]

Denoting by λ_1 and λ_2 the eigenvalues of $(\rho^*\rho|\mathcal{K})^{1/2}$, we have that
\[\lambda_1^2 + \lambda_2^2 = t \quad \text{and} \quad \lambda_1^2\lambda_2^2 = d. \]

Since $(\rho^*\rho)^{1/2}|\mathcal{K}^\perp = 0$, it follows that
\[\|\rho\|_1^2 = \text{tr}^2((\rho^*\rho)^{1/2}|\mathcal{K}) = (\lambda_1 + \lambda_2)^2 = t + 2\sqrt{d}, \]
which by inserting (2.1) and (2.4) for \(t \) and \(d \) proves the lemma.

\[\text{Theorem 2.2.} \quad \text{For all} \ a, b \in \mathcal{B}(\mathcal{H}) \text{ the norm of the restriction} \ E \text{ of} \ S_{a,b} \text{ to} \ \mathcal{B}(\mathcal{H})_{sa} \text{ satisfies} \]

\[\| E \|^2 = \sup_{\xi \in \mathcal{H}} 4(\| a\xi \|^2 \| b\xi \|^2 - \text{Im}^2 \langle b\xi, a\xi \rangle). \tag{2.3} \]

\[\text{Proof.} \quad \text{Since the norm of each selfadjoint element in} \ \mathcal{B}(\mathcal{H}) \text{ is equal to its numerical radius, we have} \]

\[\| E \| = \sup \{ |\langle (a^*b + b^*a)\xi, \xi \rangle| : \xi \in \mathcal{H}, \| \xi \| = 1 \} \]

where the supremum is over all \(x \in \mathcal{B}(\mathcal{H})_{sa} \) with \(\| x \| = 1 \) and unit vectors \(\xi \in \mathcal{H} \). Denoting for each \(\xi \in \mathcal{H} \) by \(\rho_\xi \) the trace class operator \(b\xi \otimes \overline{a\xi} + a\xi \otimes b\xi \) and noting that regarding \(\rho_\xi \) as a linear functional on \(\mathcal{B}(\mathcal{H}) \) we have \(\| \rho_\xi \|_1 = \| \rho_\xi \|_{\mathcal{B}(\mathcal{H})_{sa}} \) since \(\rho_\xi \) is selfadjoint (see [11, p. 255]), we may rewrite (2.3) as

\[\| E \| = \sup \{ \| \rho_\xi \| : \rho_\xi (x) : \ x \in \mathcal{B}(\mathcal{H})_{sa}, \| x \| = 1, \xi \in \mathcal{H}, \| \xi \| = 1 \} = \sup \| \rho_\xi \|_1. \]

Finally, noting that \(\text{Re}(z^2) = |z|^2 - 2\text{Im}^2z \) for each \(z \in \mathbb{C} \), we have by Lemma 2.1 that

\[\| \rho_\xi \|^2 = 2\| b\xi \|^2 |a\xi|^2 + 2\text{Re}(\langle b\xi, a\xi \rangle^2) + 2\| b\xi \wedge a\xi \|^2 \]

\[= 2|a\xi|^2 \| b\xi \|^2 + 2\| b\xi \wedge a\xi \|^2 - 4\text{Im}^2(b\xi, a\xi) \]

\[= 4|a\xi|^2 \| b\xi \|^2 - 4\text{Im}^2(b\xi, a\xi). \]

\[\text{Note that (2.3) can be written as} \]

\[\| E \| = \sup_{\| \xi \| = 1} \sqrt{\| a\xi \wedge b\xi \|^2 + \text{Re}^2\langle a\xi, b\xi \rangle} \]

and that \(\| a\xi \wedge b\xi \| \) is the complex analogue of the area of the parallelogram spanned by \(a\xi \) and \(b\xi \).

It is not hard to deduce from (2.3) the result of [12] that \(\| E \| \geq \| a \| \| b \| \) if \(a \) and \(b \) are selfadjoint, but we shall not do this since it is just a special case of Corollary 2.3 below.

To motivate the formula for the norm of \(S_{a,b} \) in Theorem 1.4 we shall now transform (2.3). Using twice the equality

\[2\alpha\beta = \inf_{t>0} \{ t\alpha^2 + \frac{1}{t}\beta^2 \}, \]

which holds for all \(\alpha, \beta \geq 0 \), and putting \(\text{Im}(a^*b) = -\frac{1}{2}(a^*b - b^*a) \), we may rewrite (2.2) as

\[\| E \| = \inf_{\| \xi \| = 1} \sup_{t>0} \left(\| t\alpha\xi \|^2 + \frac{1}{t} \| b\xi \|^2 \right)^{\frac{1}{2}} \]

\[= \inf_{\| \xi \| = 1} \sup_{t>0} \left(\langle (ta^*a + \frac{1}{t}b^*b + 2\text{Im}(a^*b))\xi, \xi \rangle + \langle (ta^*a + \frac{1}{t}b^*b - 2\text{Im}(a^*b))\xi, \xi \rangle \right)^{\frac{1}{2}} \]

\[= \frac{1}{2} \inf_{\| \xi \| = 1} \sup_{t,s>0} \left(t(s + \frac{1}{s})a^*a + \frac{1}{t}(s + \frac{1}{s})b^*b + 2(s - \frac{1}{s})\text{Im}(a^*b) \right), \]
To simplify the notation, put
\[p = \frac{1}{2}(s + \frac{1}{s}), \quad q = \frac{1}{2}(s - \frac{1}{s}), \quad r = \frac{1}{2t}(s + \frac{1}{s}) \]
and let
\[\Lambda = \{(p, q, r) \in \mathbb{R}^3 : p > 0, r > 0, pr - q^2 = 1\} \]
Note that the map \((t, s) \mapsto (p, q, r)\) from \(\mathbb{R}^+ \times \mathbb{R}^+\) on \(\Lambda\) is surjective (in fact bijective). Furthermore, for each
\[(2.5) \quad \lambda = (p, q, r) \in \Lambda, \quad \text{let} \quad c_\lambda = pa^*a + rb^*b + 2q\text{Im}(a^*b). \]
Then from the above computation we have
\[(2.6) \quad \|S_{a, \lambda}\| = \sup_{\|\xi\| = 1} \inf_{\lambda \in \Lambda} \langle c_\lambda \xi, \xi \rangle. \]
We note that \(c_\lambda\) is positive since
\[(2.7) \quad c_\lambda = p(a - i\frac{q}{p}b)^*(a - i\frac{q}{p}b) + \frac{1}{p}b^*b. \]
Moreover, denoting \(m = \inf_{t \in \mathbb{R}} \|a - itb\|\), \((2.7)\) implies that
\[(2.8) \quad \|c_\lambda\| \geq p\|a - i\frac{q}{p}b\|^2 \geq pm^2. \]
Hence \(\|c_\lambda\| \to \infty\) as \(p\) (or, similarly, \(r\)) tends to \(\infty\) if \(m \neq 0\). Since \(pr - q^2 = 1\) for all \(\lambda = (p, q, r) \in \Lambda\), it follows by a standard compactness argument that there exists a \(\lambda_0 \in \Lambda\) such that \(\|c_{\lambda_0}\| = \inf_{\lambda \in \Lambda} \|c_\lambda\|\) if \(a\) and \(ib\) are linearly independent over \(\mathbb{R}\).

We shall use the usual notation \(w(a)\) for the numerical radius of an operator \(a \in \mathcal{B}(\mathcal{H})\). It is well known that \(w(a) = \|a\|\) if \(a\) is selfadjoint. The following lemma implies that (at least if \(\mathcal{H}\) is finite dimensional) we may interchange “\(\sup_{\xi}\)” and “\(\inf_{\lambda}\)” in \((2.6)\).

Lemma 2.3. Suppose that \(a\) and \(ib\) are linearly independent over \(\mathbb{R}\) and that \(\mathcal{H}\) is finite dimensional. Then there exist \(\lambda_0 = (p_0, q_0, r_0) \in \Lambda\) and a unit vector \(\xi \in \mathcal{H}\) such that
\[w(c_{\lambda_0}) = w_0 := \min_{\lambda \in \Lambda} w(c_\lambda), \]
\[\frac{1}{r_0}\|a\xi\|^2 = \frac{1}{2}w_0 = \frac{1}{p_0}\|b\xi\|^2 \quad \text{and} \quad \text{Im}(b\xi, a\xi) = -\frac{1}{2}q_0w_0. \]
Moreover, \(\inf_{\lambda \in \Lambda} \langle c_\lambda \xi, \xi \rangle \geq w_0\); hence
\[\sup_{\|\eta\| = 1} \inf_{\lambda \in \Lambda} \langle c_\lambda \eta, \eta \rangle = \inf_{\lambda \in \Lambda} \sup_{\|\eta\| = 1} \langle c_\lambda \eta, \eta \rangle. \]

Proof. We have already seen in the argument following \((2.8)\) that there exists \(\lambda_0 = (p_0, q_0, r_0) \in \Lambda\) satisfying \(w(c_{\lambda_0}) = \inf_{\lambda \in \Lambda} w(\lambda)\). Put \(c_0 = c_{\lambda_0}, s = p_0 - p, t = q - q_0\) and write \(r = \frac{1 + a^2}{p}\) as the sum of the Taylor polynomial of degree one (in \(s, t\)) plus the remainder
\[r = r_0 + \frac{r_0}{p_0}s + \frac{2q_0}{p_0}t + R(s, t), \quad \text{where} \quad R(s, t) = \frac{p_0t^2 + r_0s^2 + 2q_0ts}{p_0p}. \]
Then by the definition \((2.5)\) of \(c_\lambda\) we have
\[(2.9) \quad c_\lambda = c_0 + sd + te + R(s, t)b^*b, \]

where
\begin{align}
d &= \frac{r_0}{p_0} b^* b - a^* a \quad \text{and} \quad e = \frac{q_0}{p_0} b^* b + 2 \text{Im}(a^* b).
\end{align}

By the minimality of w_0 (and since $\dim \mathcal{H} < \infty$), for each $\lambda = (p, q, r) \in \Lambda$ there exists a unit vector $\xi_\lambda \in \mathcal{H}$ such that $\langle c_\lambda \xi_\lambda, \xi_\lambda \rangle \geq w_0$: that is,
\begin{align}
\langle c_0 \xi_\lambda, \xi_\lambda \rangle + s \langle d \xi_\lambda, \xi_\lambda \rangle + t \langle c_\lambda \xi_\lambda, \xi_\lambda \rangle + R(s, t) \| b \xi_\lambda \|^2 \geq w_0 \geq \langle c_0 \xi_\lambda, \xi_\lambda \rangle,
\end{align}
where λ depends on (s, t). For a fixed $(u, v) \in \mathbb{R}^2$, we may replace in \eqref{2.11} (s, t) by $(u/n, v/n)$ ($n \in \mathbb{N}$) to get a unit vector $\xi_n = \xi_{\lambda(u/n,v/n)}$ such that
\begin{align}
\langle c_0 \xi_n, \xi_n \rangle + \frac{u}{n} \langle d \xi_n, \xi_n \rangle + \frac{v}{n} \langle e \xi_n, \xi_n \rangle + R(u/n, v/n) \| b \xi_n \|^2 \geq w_0 \geq \langle c_0 \xi_n, \xi_n \rangle.
\end{align}

By choosing a subsequence, we may assume that the vectors ξ_n converge to some unit vector $\xi_{u,v} \in \mathcal{H}$. From \eqref{2.12} we first conclude that $\lim \langle c_0 \xi_n, \xi_n \rangle = w_0$, hence
\begin{align}
\langle c_0 \xi_{u,v}, \xi_{u,v} \rangle = w_0
\end{align}
and then (since $R(s/n, t/n)$ converges to 0 as $1/n^2$) that
\begin{align}
u(d \xi_{u,v}, \xi_{u,v}) + v(e \xi_{u,v}, \xi_{u,v}) \geq 0.
\end{align}

Denote by \mathcal{K} the eigenspace of c_0 corresponding to the eigenvalue w_0. Then it follows from \eqref{2.13} that $\xi_{u,v} \in \mathcal{K}$. Moreover, since the spatial numerical range W of the compression of $d + ie$ onto \mathcal{K} is convex (see \cite{3}) and compact (since $\dim \mathcal{K} < \infty$), it follows from \eqref{2.14} that there exists a unit vector $\xi \in \mathcal{K}$ such that
\begin{align}
\langle d \xi, \xi \rangle = 0 \quad \text{and} \quad \langle e \xi, \xi \rangle = 0.
\end{align}

(Otherwise, for some linear functional ω on the plane containing W we would have that $\omega(x, y) < 0$ for all $x + iy \in W$; but since ω is necessarily of the form $\omega(x, y) = ux + vy$ for some $(u, v) \in \mathbb{R}^2$, this would contradict \eqref{2.14}.) Now it follows from \eqref{2.15} and the definition \eqref{2.10} of d and e that
\begin{align}
p_0 \| a \xi \|^2 = r_0 \| b \xi \|^2 \quad \text{and} \quad p_0 \text{Im}(b \xi, a \xi) = -q_0 \| b \xi \|^2.
\end{align}

Since $\langle c_0 \xi, \xi \rangle = w_0$ and $c_0 - p_0 a^* a + r_0 b^* b + 2q_0 \text{Im}(a^* b)$ by \eqref{2.5}, we have that
\begin{align}
p_0 \| a \xi \|^2 + r_0 \| b \xi \|^2 + 2q_0 \text{Im}(b \xi, a \xi) = w_0,
\end{align}
from which we compute by using \eqref{2.16} and the identity $p_0 r_0 - q_0^2 = 1$ that
\begin{align}
\| a \xi \|^2 &= \frac{r_0}{2} w_0, \quad \| b \xi \|^2 = \frac{p_0}{2} w_0 \quad \text{and} \quad \text{Im}(b \xi, a \xi) = -\frac{q_0}{2} w_0.
\end{align}

Finally, for each $\lambda = (p, q, r) \in \Lambda$ we compute, using \eqref{2.9}, \eqref{2.15} and $c_0 \xi = w_0 \xi$
that
\begin{align}
\langle c_\lambda \xi, \xi \rangle = w_0 + R(s, t) \| b \xi \|^2 \geq w_0,
\end{align}
since $R(s, t) \geq 0$. The inequality $\sup_{\| \eta \|=1} \inf_{\lambda \in \Lambda} \langle c_\lambda \eta, \eta \rangle \leq \inf_{\lambda \in \Lambda} \sup_{\| \eta \|=1} \langle c_\lambda \eta, \eta \rangle$ is a tautology, while the reverse inequality follows from \eqref{2.18} since $w_0 = \inf_{\lambda \in \Lambda} w(c_\lambda)$. \hfill \Box

\textbf{Proof of Theorem 1.1.} First assume that a and ib are linearly independent over \mathbb{R}. Since $\| S_{a,b} \|_{\mathcal{B}(\mathcal{H})_{sa}} \leq \| S_{a,b} \|_{\mathcal{B}(\mathcal{H})_{cb}}$ and $\| S_{a,b} \|_{\mathcal{B}(\mathcal{H})_{cb}}$ is equal to the Haagerup norm of the tensor $\tau := a^* \otimes b + b^* \otimes a$ (see \cite{10}), it suffices to prove that $\| \tau \|_h \leq \| S_{a,b} \|_{\mathcal{B}(\mathcal{H})_{sa}}$. Put $E = S_{a,b} \|_{\mathcal{B}(\mathcal{H})_{sa}}$. Observe that for all $\alpha, \beta, \gamma \in \mathbb{R}$ satisfying $\alpha \gamma - \beta^2 = 1$ we can write τ as
\begin{align}
\tau = (-i \beta a^* + \gamma b^*) \otimes (\alpha a - i \beta b) + (\alpha a^* + i \beta b^*) \otimes (i \beta a + \gamma b).
\end{align}
Hence (after a short computation),
\[
\|\tau\|_h \leq \|(\alpha^2 + \beta^2)a^*a + (\gamma^2 + \beta^2)b^*b + 2\beta(\alpha + \gamma)\operatorname{Im}(a^*b)\|.
\]
Observe that for all \((p, q, r)\) as in Theorem \ref{thm:1.1} (that is, \((p, q, r) \in \Lambda\)) we can find \(\alpha, \beta, \gamma\) so that \(\alpha^2 + \beta^2 = p, \beta^2 + \gamma^2 = r\) and \(\beta(\alpha + \gamma) = q\). (To show this, the reader may assume, by replacing \(a\) and \(b\) with \(ta\) and \(tb\) for a suitable \(t\), that \(r = p\), which simplifies the computation.) It follows that
\[
(2.19) \quad \|\tau\|_h \leq \inf_{(p, q, r) \in \Lambda} \sup_{\|\xi\| = 1} \langle pa^*a + rb^*b + 2q\operatorname{Im}(a^*b)\xi, \xi \rangle = \inf_{\lambda \in \Lambda} \sup_{\|\xi\| = 1} \langle c_\lambda \xi, \xi \rangle.
\]
If \(\mathcal{H}\) is finite dimensional, Lemma \ref{lem:2.3} implies that we can interchange the “inf” and “sup” in (2.19), and then the right side of (2.19) coincides with the right side of (2.8). Thus \(\|\tau\|_h = \|E\|\) if \(\mathcal{H}\) is finite dimensional.

If \(\mathcal{H}\) is infinite dimensional, choose an increasing net of finite rank projections \(P_\nu\) converging to the identity. We shall continue to use the notation \(c_\lambda\) and \(w_0 = \inf_{\lambda \in \Lambda} w(c_\lambda)\) from the proof of Lemma \ref{lem:2.3}. Since for \(\nu \geq \nu_0\) we have that
\[
\|tP_\nu bP_\nu\| \geq \|tP_\nu bP_\nu\| \to \infty \text{ as } |t| \to \infty \text{ if } \nu_0 \text{ is large enough, and similarly for } a \text{ in place of } b,
\]
we may assume (replacing the net by the subnet \(\nu \geq \nu_0\)) that for some positive constant \(\kappa\) we have
\[
\inf_{t \in \mathbb{R}} \|P_\nu(a - itb)P_\nu\| > \kappa \quad \text{and} \quad \inf_{t \in \mathbb{R}} \|P_\nu(b - ita)P_\nu\| > \kappa
\]
for all \(\nu\). Then by the same reasoning as that leading to (2.8), we have that
\[
w(P_\nu c_\lambda P_\nu) \geq \max(p, r)\kappa^2\] for all \(\nu\) and \(\lambda \in \Lambda\). Hence (since \(pr - q^2 = 1\)) there exists a compact subset \(\Omega\) of \(\Lambda\) such that
\[
w(P_\nu c_\lambda P_\nu) > w_0
\]
for all \(\nu\) if \(\lambda \in \Lambda \\setminus \Omega\). For each \(\nu\) let \(\lambda_\nu\) be such that \(w(P_\nu c_{\lambda_\nu} P_\nu) = \inf_{\lambda \in \Lambda} w(P_\nu c_{\lambda} P_\nu)\). Since \(w(P_\nu c_{\lambda_\nu} P_\nu) \leq w_0\), all \(\lambda_\nu\) are in \(\Omega\). Hence, by compactness and choosing a subnet, we may assume that the net \((\lambda_\nu)\) converges to some \(\lambda_0 \in \Omega\). Then from (2.19),
\[
(2.20) \quad \|\tau\|_h \leq \inf_{\lambda \in \Lambda} w(c_\lambda) \leq w(c_{\lambda_0}) = \lim_{\lambda \in \Lambda} \|c_\lambda\|.
\]
But \(\lim \|c_\lambda\| = \lim \|P_\nu c_{\lambda_\nu} P_\nu\|\) since the net \((c_{\lambda_\nu})\) converges in norm and \((P_\nu)\) converges strongly to the identity. Moreover, by the already proved finite-dimensional case and the choice of \(\lambda_0\), we have that \(\|P_\nu c_{\lambda_0} P_\nu\| = \|E_\nu\|\), where \(E_\nu\) is the operator on \(B(P_\nu \mathcal{H})\) defined by \(E_\nu(x) = P_\nu a^*P_\nu xP_\nu P_\nu + P_\nu b^*P_\nu xP_\nu aP_\nu\). Since clearly \(\|E_\nu\| \leq \|E\|\) for each \(\nu\), we finally conclude from (2.20) that \(\|\tau\|_h \leq \|E\|\).

It remains to consider the case when \(a\) and \(ib\) are linearly dependent over \(\mathbb{R}\), say \(b = tia\) for some \(t \in \mathbb{R}\). Then \(S_{a, b} = 0\) and the theorem reduces to the identity
\[
\inf\{\|p + t^2r + 2qt\| : p, q, r \in \mathbb{R}, p, r > 0, pr - q^2 = 1\} = 0.
\]
To verify this identity, just put \(q = -rt, p = r^{-1}(1 + r^2t^2)\) and let \(r \to \infty\).

\[\square\]

Remark 2.4. By an application of the Kaplansky density theorem, the conclusions of Theorem \ref{thm:1.1} can be extended to the operator \(S_{a, b}\) acting on any irreducible \(C^*\)-subalgebra of \(B(\mathcal{H})\). In fact, the theorem can be extended to any prime \(C^*\)-algebra \(A\) since each separable subalgebra of \(A\) is contained in a separable prime \(C^*\)-subalgebra \(A_0\) of \(A\) and \(A_0\) has a faithful irreducible representation. It is not known to the author, however, to what kind of more general \(C^*\)-algebras can Theorem...
be extended if scalars are replaced by central elements of the corresponding multiplier algebras.

Since the formula in Theorem 1.1 may not be easy to apply in practical computations, we now give a simple estimate for the norm of $S_{a,b}$.

Let us denote by γ_a the minimal modulus of an operator $a \in B(\mathcal{H})$, that is, the smallest point in the spectrum of $|a|$.

Corollary 2.5. For all $a, b \in B(\mathcal{H})$ the estimate

$$\max\{\|a\|, \inf_{t \in \mathbb{R}} \|b - tia\|, \inf_{t \in \mathbb{R}} \|a - tib\|\} \leq \|S_{a,b}\| \leq 2\sqrt{\|a\|^2\|b\|^2 - \gamma_{\text{Im}(a^*b)}^2}$$

holds.

Proof. The inequality $\|S_{a,b}\| \leq 2\sqrt{\|a\|^2\|b\|^2 - \gamma_{\text{Im}(a^*b)}^2}$ follows immediately from Theorem 1.1 and the identity (2.3). To prove the other inequality, note that from (2.21) we have for each $\xi \in \mathcal{H}$ (denoting $t = q/p$),

$$\langle cx, \xi \rangle = p\|\langle a - tib\rangle\xi\|^2 + \frac{1}{p}\|b\xi\|^2 \geq 2\|\langle a - tib\rangle\xi\||b\xi||.$$

(2.21)

Now observe that $\sup_{\|\xi\| = 1} \|c\xi\||d\xi| \geq \frac{1}{2}\|c\||d||$ for all $c, d \in B(\mathcal{H})$. (By the polar decomposition it suffices to prove this for positive c and d with norm 1. Then, if \mathcal{H} is finite dimensional, choose a unit vector ξ such that the projections of ξ to the eigenspaces of c and d corresponding to the eigenvalue 1 both have lengths at least $1/\sqrt{2}$ and note that $\|c\xi\||d\xi| \geq 1/2$. If \mathcal{H} is infinite dimensional, use an approximate version of this argument.) Applying this to (2.21) we get

$$\sup_{\|\xi\| = 1} \langle cx, \xi \rangle \geq \|a - tib\||b||$$

hence by Theorem 1.1

$$\|S_{a,b}\| = \inf_{\lambda \in \Lambda} \sup_{\|\xi\| = 1} \langle c\lambda x, \xi \rangle \geq \inf_{t \in \mathbb{R}} \|a - tib\||b||.$$

Since we can interchange the roles of a and b, this concludes the proof. \qed

Theorem 1.1 shows that $\|S_{a,b}\|_{cb} = \|S_{a,b}B(\mathcal{H})_{sa}\|$, but to compute the norm it is usually more convenient to use the formula (2.3) from Theorem 2.2.

Example 2.6. If u and v are isometries, then

$$\|S_{u,v}\| = 2\sqrt{1 - \gamma_{\text{Im}(u^*v)}^2};$$

hence, if in addition u or v is a unitary, $\|S_{u,v}\| = 2\|\text{Re}(u^*v)\|$.

Indeed, the first equality follows immediately from (2.3) and Theorem 1.1. If, say, u is a unitary, then $w = u^*v$ is an isometry. If w contains the unilateral shift as a direct summand, then the spectra of $\text{Im}(w)$ and $\text{Re}(w)$ are $[-1,1]$. Hence $\gamma_{\text{Im}(w)} = 0$ and $\|S_{u,v}\| = 2\|\text{Re}(w)\|$. On the other hand, if w does not contain the unilateral shift as a direct summand, then w is a unitary (see 3) and the functional calculus shows that $\sqrt{1 - \gamma_{\text{Im}(w)}^2} = \|\text{Re}(w)\|$.

Note that $S_{u,v}(1) = 2\text{Re}(u^*v)$; hence $S_{u,v}$ attains its norm at the identity operator if u and v are unitaries.
It may also be interesting to observe that in the case of isometries the upper bound in Corollary 2.5 agrees with the norm of $\|S_{u,v}\|$ (after a short calculation). There are, however, examples showing that the lower bound cannot be improved in general. Take, for instance, two non-zero orthogonal projections e, f with $ef = 0$; using (2.1) one can compute that $\|S_{e,f}\| = 1$, which in this case agrees with the lower bound in Corollary 2.5.

Note. After this paper was submitted for publication, we received two preprints from Richard M. Timoney, Trinity College Dublin, in which the relation between the completely bounded norm and the k-norms of elementary operators is investigated; his results also show that $\|S_{a,b}\|_{cb} = \|S_{a,b}\|$.

Note added in proof. Mathieu’s conjecture mentioned in the introduction has been recently confirmed by Blanco, Boumazgour and Ransford and independently by Timoney.

References